1

RAVEN: Erasing Invisible Watermarks via Novel View Synthesis

Fahad Shamshad, Nils Lukas, Karthik Nandakumar (cs.CV)

Invisible watermarking has become a critical mechanism for authenticating AI-generated image content, with major platforms deploying watermarking schemes at scale. However, evaluating the vulnerability of these schemes against sophisticated removal attacks remains essential to assess their reliability and guide robust design. In this work, we expose a fundamental vulnerability in invisible watermarks by reformulating watermark removal as a view synthesis problem. Our key insight is that generating a perceptually consistent alternative view of the same semantic content, akin to re-observing a scene from a shifted perspective, naturally removes the embedded watermark while preserving visual fidelity. This reveals a critical gap: watermarks robust to pixel-space and frequency-domain attacks remain vulnerable to semantic-preserving viewpoint transformations. We introduce a zero-shot diffusion-based framework that applies controlled geometric transformations in latent space, augmented with view-guided correspondence attention to maintain structural consistency during reconstruction. Operating on frozen pre-trained models without detector access or watermark knowledge, our method achieves state-of-the-art watermark suppression across 15 watermarking methods--outperforming 14 baseline attacks while maintaining superior perceptual quality across multiple datasets.

Published: January 13, 2026

Last updated: January 13, 2026

3AM: Segment Anything with Geometric Consistency in Videos

Yang-Che Sun, Cheng Sun, Chin-Yang Lin, Fu-En Yang, Min-Hung Chen, Yen-Yu Lin, Yu-Lun Liu (cs.CV)

Video object segmentation methods like SAM2 achieve strong performance through memory-based architectures but struggle under large viewpoint changes due to reliance on appearance features. Traditional 3D instance segmentation methods address viewpoint consistency but require camera poses, depth maps, and expensive preprocessing. We introduce 3AM, a training-time enhancement that integrates 3D-aware features from MUSt3R into SAM2. Our lightweight Feature Merger fuses multi-level MUSt3R features that encode implicit geometric correspondence. Combined with SAM2's appearance features, the model achieves geometry-consistent recognition grounded in both spatial position and visual similarity. We propose a field-of-view aware sampling strategy ensuring frames observe spatially consistent object regions for reliable 3D correspondence learning. Critically, our method requires only RGB input at inference, with no camera poses or preprocessing. On challenging datasets with wide-baseline motion (ScanNet++, Replica), 3AM substantially outperforms SAM2 and extensions, achieving 90.6% IoU and 71.7% Positive IoU on ScanNet++'s Selected Subset, improving over state-of-the-art VOS methods by +15.9 and +30.4 points. Project page: https://jayisaking.github.io/3AM-Page/

Published: January 13, 2026

Last updated: January 13, 2026

Modeling LLM Agent Reviewer Dynamics in Elo-Ranked Review System

Hsiang-Wei Huang, Junbin Lu, Kuang-Ming Chen, Jenq-Neng Hwang (cs.CL, cs.AI)

In this work, we explore the Large Language Model (LLM) agent reviewer dynamics in an Elo-ranked review system using real-world conference paper submissions. Multiple LLM agent reviewers with different personas are engage in multi round review interactions moderated by an Area Chair. We compare a baseline setting with conditions that incorporate Elo ratings and reviewer memory. Our simulation results showcase several interesting findings, including how incorporating Elo improves Area Chair decision accuracy, as well as reviewers' adaptive review strategy that exploits our Elo system without improving review effort. Our code is available at https://github.com/hsiangwei0903/EloReview.

Published: January 13, 2026

Last updated: January 13, 2026

Motion Attribution for Video Generation

Xindi Wu, Despoina Paschalidou, Jun Gao, Antonio Torralba, Laura Leal-Taixé, Olga Russakovsky, Sanja Fidler, Jonathan Lorraine (cs.CV, cs.AI, cs.LG, cs.MM, cs.RO)

Despite the rapid progress of video generation models, the role of data in influencing motion is poorly understood. We present Motive (MOTIon attribution for Video gEneration), a motion-centric, gradient-based data attribution framework that scales to modern, large, high-quality video datasets and models. We use this to study which fine-tuning clips improve or degrade temporal dynamics. Motive isolates temporal dynamics from static appearance via motion-weighted loss masks, yielding efficient and scalable motion-specific influence computation. On text-to-video models, Motive identifies clips that strongly affect motion and guides data curation that improves temporal consistency and physical plausibility. With Motive-selected high-influence data, our method improves both motion smoothness and dynamic degree on VBench, achieving a 74.1% human preference win rate compared with the pretrained base model. To our knowledge, this is the first framework to attribute motion rather than visual appearance in video generative models and to use it to curate fine-tuning data.

Published: January 13, 2026

Last updated: January 13, 2026

SemiETPicker: Fast and Label-Efficient Particle Picking for CryoET Tomography Using Semi-Supervised Learning

Linhan Wang, Jianwen Dou, Wang Li, Shengkun Wang, Zhiwu Xie, Chang-Tien Lu, Yinlin Chen (cs.CV)

Cryogenic Electron Tomography (CryoET) combined with sub-volume averaging (SVA) is the only imaging modality capable of resolving protein structures inside cells at molecular resolution. Particle picking, the task of localizing and classifying target proteins in 3D CryoET volumes, remains the main bottleneck. Due to the reliance on time-consuming manual labels, the vast reserve of unlabeled tomograms remains underutilized. In this work, we present a fast, label-efficient semi-supervised framework that exploits this untapped data. Our framework consists of two components: (i) an end-to-end heatmap-supervised detection model inspired by keypoint detection, and (ii) a teacher-student co-training mechanism that enhances performance under sparse labeling conditions. Furthermore, we introduce multi-view pseudo-labeling and a CryoET-specific DropBlock augmentation strategy to further boost performance. Extensive evaluations on the large-scale CZII dataset show that our approach improves F1 by 10% over supervised baselines, underscoring the promise of semi-supervised learning for leveraging unlabeled CryoET data.

Published: October 25, 2025

Last updated: January 13, 2026

Older Adults' Preferences for Feedback Cadence from an Exercise Coach Robot

Roshni Kaushik, Reid Simmons (cs.RO, cs.HC)

People can respond to feedback and guidance in different ways, and it is important for robots to personalize their interactions and utilize verbal and nonverbal communication cues. We aim to understand how older adults respond to different cadences of verbal and nonverbal feedback of a robot exercise coach. We conducted an online study of older adults, where participants evaluated videos of the robot giving feedback at different cadences for each modality. The results indicate that changing the cadence of one modality affects the perception of both it and the other modality. We can use the results from this study to better design the frequency of the robot coach's feedback during an exercise session with this population.

Published: January 13, 2026

Last updated: January 13, 2026

FilmSceneDesigner: Chaining Set Design for Procedural Film Scene Generation

Zhifeng Xie, Keyi Zhang, Yiye Yan, Yuling Guo, Fan Yang, Jiting Zhou, Mengtian Li (cs.CV)

Film set design plays a pivotal role in cinematic storytelling and shaping the visual atmosphere. However, the traditional process depends on expert-driven manual modeling, which is labor-intensive and time-consuming. To address this issue, we introduce FilmSceneDesigner, an automated scene generation system that emulates professional film set design workflow. Given a natural language description, including scene type, historical period, and style, we design an agent-based chaining framework to generate structured parameters aligned with film set design workflow, guided by prompt strategies that ensure parameter accuracy and coherence. On the other hand, we propose a procedural generation pipeline which executes a series of dedicated functions with the structured parameters for floorplan and structure generation, material assignment, door and window placement, and object retrieval and layout, ultimately constructing a complete film scene from scratch. Moreover, to enhance cinematic realism and asset diversity, we construct SetDepot-Pro, a curated dataset of 6,862 film-specific 3D assets and 733 materials. Experimental results and human evaluations demonstrate that our system produces structurally sound scenes with strong cinematic fidelity, supporting downstream tasks such as virtual previs, construction drawing and mood board creation.

Published: November 24, 2025

Last updated: January 13, 2026

MemRec: Collaborative Memory-Augmented Agentic Recommender System

Weixin Chen, Yuhan Zhao, Jingyuan Huang, Zihe Ye, Clark Mingxuan Ju, Tong Zhao, Neil Shah, Li Chen, Yongfeng Zhang (cs.IR, cs.AI)

The evolution of recommender systems has shifted preference storage from rating matrices and dense embeddings to semantic memory in the agentic era. Yet existing agents rely on isolated memory, overlooking crucial collaborative signals. Bridging this gap is hindered by the dual challenges of distilling vast graph contexts without overwhelming reasoning agents with cognitive load, and evolving the collaborative memory efficiently without incurring prohibitive computational costs. To address this, we propose MemRec, a framework that architecturally decouples reasoning from memory management to enable efficient collaborative augmentation. MemRec introduces a dedicated, cost-effective LM_Mem to manage a dynamic collaborative memory graph, serving synthesized, high-signal context to a downstream LLM_Rec. The framework operates via a practical pipeline featuring efficient retrieval and cost-effective asynchronous graph propagation that evolves memory in the background. Extensive experiments on four benchmarks demonstrate that MemRec achieves state-of-the-art performance. Furthermore, architectural analysis confirms its flexibility, establishing a new Pareto frontier that balances reasoning quality, cost, and privacy through support for diverse deployments, including local open-source models. Code:https://github.com/rutgerswiselab/memrec and Homepage: https://memrec.weixinchen.com

Published: January 13, 2026

Last updated: January 13, 2026

Agent Contracts: A Formal Framework for Resource-Bounded Autonomous AI Systems

Qing Ye, Jing Tan (cs.MA)

The Contract Net Protocol (1980) introduced coordination through contracts in multi-agent systems. Modern agent protocols standardize connectivity and interoperability; yet, none provide formal, resource governance-normative mechanisms to bound how much agents may consume or how long they may operate. We introduce Agent Contracts, a formal framework that extends the contract metaphor from task allocation to resource-bounded execution. An Agent Contract unifies input/output specifications, multi-dimensional resource constraints, temporal boundaries, and success criteria into a coherent governance mechanism with explicit lifecycle semantics. For multi-agent coordination, we establish conservation laws ensuring delegated budgets respect parent constraints, enabling hierarchical coordination through contract delegation. Empirical validation across four experiments demonstrates 90% token reduction with 525x lower variance in iterative workflows, zero conservation violations in multi-agent delegation, and measurable quality-resource tradeoffs through contract modes. Agent Contracts provide formal foundations for predictable, auditable, and resource-bounded autonomous AI deployment.

Published: January 13, 2026

Last updated: January 13, 2026

Reasoning Matters for 3D Visual Grounding

Hsiang-Wei Huang, Kuang-Ming Chen, Wenhao Chai, Cheng-Yen Yang, Jen-Hao Cheng, Jenq-Neng Hwang (cs.CV, cs.AI)

The recent development of Large Language Models (LLMs) with strong reasoning ability has driven research in various domains such as mathematics, coding, and scientific discovery. Meanwhile, 3D visual grounding, as a fundamental task in 3D understanding, still remains challenging due to the limited reasoning ability of recent 3D visual grounding models. Most of the current methods incorporate a text encoder and visual feature encoder to generate cross-modal fuse features and predict the referring object. These models often require supervised training on extensive 3D annotation data. On the other hand, recent research also focus on scaling synthetic data to train stronger 3D visual grounding LLM, however, the performance gain remains limited and non-proportional to the data collection cost. In this work, we propose a 3D visual grounding data pipeline, which is capable of automatically synthesizing 3D visual grounding data along with corresponding reasoning process. Additionally, we leverage the generated data for LLM fine-tuning and introduce Reason3DVG-8B, a strong 3D visual grounding LLM that outperforms previous LLM-based method 3D-GRAND using only 1.6% of their training data, demonstrating the effectiveness of our data and the importance of reasoning in 3D visual grounding.

Published: January 13, 2026

Last updated: January 13, 2026

Multiplex Thinking: Reasoning via Token-wise Branch-and-Merge

Yao Tang, Li Dong, Yaru Hao, Qingxiu Dong, Furu Wei, Jiatao Gu (cs.CL, cs.AI, cs.LG)

Large language models often solve complex reasoning tasks more effectively with Chain-of-Thought (CoT), but at the cost of long, low-bandwidth token sequences. Humans, by contrast, often reason softly by maintaining a distribution over plausible next steps. Motivated by this, we propose Multiplex Thinking, a stochastic soft reasoning mechanism that, at each thinking step, samples K candidate tokens and aggregates their embeddings into a single continuous multiplex token. This preserves the vocabulary embedding prior and the sampling dynamics of standard discrete generation, while inducing a tractable probability distribution over multiplex rollouts. Consequently, multiplex trajectories can be directly optimized with on-policy reinforcement learning (RL). Importantly, Multiplex Thinking is self-adaptive: when the model is confident, the multiplex token is nearly discrete and behaves like standard CoT; when it is uncertain, it compactly represents multiple plausible next steps without increasing sequence length. Across challenging math reasoning benchmarks, Multiplex Thinking consistently outperforms strong discrete CoT and RL baselines from Pass@1 through Pass@1024, while producing shorter sequences. The code and checkpoints are available at https://github.com/GMLR-Penn/Multiplex-Thinking.

Published: January 13, 2026

Last updated: January 13, 2026

S3-CLIP: Video Super Resolution for Person-ReID

Tamas Endrei, Gyorgy Cserey (cs.CV, cs.AI)

Tracklet quality is often treated as an afterthought in most person re-identification (ReID) methods, with the majority of research presenting architectural modifications to foundational models. Such approaches neglect an important limitation, posing challenges when deploying ReID systems in real-world, difficult scenarios. In this paper, we introduce S3-CLIP, a video super-resolution-based CLIP-ReID framework developed for the VReID-XFD challenge at WACV 2026. The proposed method integrates recent advances in super-resolution networks with task-driven super-resolution pipelines, adapting them to the video-based person re-identification setting. To the best of our knowledge, this work represents the first systematic investigation of video super-resolution as a means of enhancing tracklet quality for person ReID, particularly under challenging cross-view conditions. Experimental results demonstrate performance competitive with the baseline, achieving 37.52% mAP in aerial-to-ground and 29.16% mAP in ground-to-aerial scenarios. In the ground-to-aerial setting, S3-CLIP achieves substantial gains in ranking accuracy, improving Rank-1, Rank-5, and Rank-10 performance by 11.24%, 13.48%, and 17.98%, respectively.

Published: January 13, 2026

Last updated: January 13, 2026

LocalSearchBench: Benchmarking Agentic Search in Real-World Local Life Services

Hang He, Chuhuai Yue, Chengqi Dong, Mingxue Tian, Hao Chen, Zhenfeng Liu, Jiajun Chai, Xiaohan Wang, Yufei Zhang, Qun Liao, Guojun Yin, Wei Lin, Chengcheng Wan, Haiying Sun, Ting Su (cs.AI)

Recent advances in large reasoning models LRMs have enabled agentic search systems to perform complex multi-step reasoning across multiple sources. However, most studies focus on general information retrieval and rarely explores vertical domains with unique challenges. In this work, we focus on local life services and introduce LocalSearchBench, which encompass diverse and complex business scenarios. Real-world queries in this domain are often ambiguous and require multi-hop reasoning across merchants and products, remaining challenging and not fully addressed. As the first comprehensive benchmark for agentic search in local life services, LocalSearchBench comprises a database of over 1.3M merchant entries across 6 service categories and 9 major cities, and 900 multi-hop QA tasks from real user queries that require multi-step reasoning. We also developed LocalPlayground, a unified environment integrating multiple tools for LRMs interaction. Experiments show that even state-of-the-art LRMs struggle on LocalSearchBench: the best model (DeepSeek-V3.2) achieves only 35.60% correctness, and most models have issues with completeness (average 60.32%) and faithfulness (average 30.72%). This highlights the need for specialized benchmarks and domain-specific agent training in local life services. Code, Benchmark, and Leaderboard are available at https://localsearchbench.github.io/.

Published: December 08, 2025

Last updated: January 13, 2026

APEX-SWE

Abhi Kottamasu, Akul Datta, Aakash Barthwal, Chirag Mahapatra, Ajay Arun, Adarsh Hiremath, Brendan Foody, Bertie Vidgen (cs.SE, cs.AI, cs.CL)

We introduce the AI Productivity Index for Software Engineering (APEX-SWE), a benchmark for assessing whether frontier AI models can execute economically valuable software engineering work. Unlike existing evaluations that focus on narrow, well-defined tasks, APEX-SWE assesses two novel task types that reflect real-world software engineering work: (1) Integration tasks (n=100), which require constructing end-to-end systems across heterogeneous cloud primitives, business applications, and infrastructure-as-code services, and (2) Observability tasks (n=100), which require debugging production failures using telemetry signals such as logs and dashboards, as well as unstructured context. We evaluated eight frontier models on APEX-SWE. Gemini 3 Pro (Thinking = High) performs best, with a Pass@1 score of 25\%. Our analysis shows that strong performance is primarily driven by epistemic reasoning, defined as the ability to distinguish between assumptions and verified facts, combined with agency to resolve uncertainty prior to acting. We open-source the APEX-SWE evaluation harness and a dev set (n=50).

Published: January 13, 2026

Last updated: January 13, 2026

Free-RBF-KAN: Kolmogorov-Arnold Networks with Adaptive Radial Basis Functions for Efficient Function Learning

Shao-Ting Chiu, Siu Wun Cheung, Ulisses Braga-Neto, Chak Shing Lee, Rui Peng Li (cs.LG, math.NA)

Kolmogorov-Arnold Networks (KANs) have shown strong potential for efficiently approximating complex nonlinear functions. However, the original KAN formulation relies on B-spline basis functions, which incur substantial computational overhead due to De Boor's algorithm. To address this limitation, recent work has explored alternative basis functions such as radial basis functions (RBFs) that can improve computational efficiency and flexibility. Yet, standard RBF-KANs often sacrifice accuracy relative to the original KAN design. In this work, we propose Free-RBF-KAN, a RBF-based KAN architecture that incorporates adaptive learning grids and trainable smoothness to close this performance gap. Our method employs freely learnable RBF shapes that dynamically align grid representations with activation patterns, enabling expressive and adaptive function approximation. Additionally, we treat smoothness as a kernel parameter optimized jointly with network weights, without increasing computational complexity. We provide a general universality proof for RBF-KANs, which encompasses our Free-RBF-KAN formulation. Through a broad set of experiments, including multiscale function approximation, physics-informed machine learning, and PDE solution operator learning, Free-RBF-KAN achieves accuracy comparable to the original B-spline-based KAN while delivering faster training and inference. These results highlight Free-RBF-KAN as a compelling balance between computational efficiency and adaptive resolution, particularly for high-dimensional structured modeling tasks.

Published: January 12, 2026

Last updated: January 13, 2026

The Conflict Graph Design: Estimating Causal Effects under Arbitrary Neighborhood Interference

Vardis Kandiros, Charilaos Pipis, Constantinos Daskalakis, Christopher Harshaw (stat.ME, cs.DS, math.ST)

A fundamental problem in network experiments is selecting an appropriate experimental design in order to precisely estimate a given causal effect of interest. In this work, we propose the Conflict Graph Design, a general approach for constructing experiment designs under network interference with the goal of precisely estimating a pre-specified causal effect. A central aspect of our approach is the notion of a conflict graph, which captures the fundamental unobservability associated with the causal effect and the underlying network. In order to estimate effects, we propose a modified Horvitz–Thompson estimator. We show that its variance under the Conflict Graph Design is bounded as O(λ(H) / n ), where λ(H) is the largest eigenvalue of the adjacency matrix of the conflict graph. These rates depend on both the underlying network and the particular causal effect under investigation. Not only does this yield the best known rates of estimation for several well-studied causal effects (e.g. the global and direct effects) but it also provides new methods for effects which have received less attention from the perspective of experiment design (e.g. spill-over effects). Finally, we construct conservative variance estimators which facilitate asymptotically valid confidence intervals for the causal effect of interest.

Published: November 16, 2024

Last updated: January 13, 2026

Near-perfect photo-ID of the Hula painted frog with zero-shot deep local-feature matching

Maayan Yesharim, R. G. Bina Perl, Uri Roll, Sarig Gafny, Eli Geffen, Yoav Ram (cs.CV, q-bio.QM)

Accurate individual identification is essential for monitoring rare amphibians, yet invasive marking is often unsuitable for critically endangered species. We evaluate state-of-the-art computer-vision methods for photographic re-identification of the Hula painted frog (Latonia nigriventer) using 1,233 ventral images from 191 individuals collected during 2013-2020 capture-recapture surveys. We compare deep local-feature matching in a zero-shot setting with deep global-feature embedding models. The local-feature pipeline achieves 98% top-1 closed-set identification accuracy, outperforming all global-feature models; fine-tuning improves the best global-feature model to 60% top-1 (91% top-10) but remains below local matching. To combine scalability with accuracy, we implement a two-stage workflow in which a fine-tuned global-feature model retrieves a short candidate list that is re-ranked by local-feature matching, reducing end-to-end runtime from 6.5-7.8 hours to ~38 minutes while maintaining ~96% top-1 closed-set accuracy on the labeled dataset. Separation of match scores between same- and different-individual pairs supports thresholding for open-set identification, enabling practical handling of novel individuals. We deploy this pipeline as a web application for routine field use, providing rapid, standardized, non-invasive identification to support conservation monitoring and capture-recapture analyses. Overall, in this species, zero-shot deep local-feature matching outperformed global-feature embedding and provides a strong default for photo-identification.

Published: January 13, 2026

Last updated: January 13, 2026

DentalX: Context-Aware Dental Disease Detection with Radiographs

Zhi Qin Tan, Xiatian Zhu, Owen Addison, Yunpeng Li (cs.CV)

Diagnosing dental diseases from radiographs is time-consuming and challenging due to the subtle nature of diagnostic evidence. Existing methods, which rely on object detection models designed for natural images with more distinct target patterns, struggle to detect dental diseases that present with far less visual support. To address this challenge, we propose {\bf DentalX}, a novel context-aware dental disease detection approach that leverages oral structure information to mitigate the visual ambiguity inherent in radiographs. Specifically, we introduce a structural context extraction module that learns an auxiliary task: semantic segmentation of dental anatomy. The module extracts meaningful structural context and integrates it into the primary disease detection task to enhance the detection of subtle dental diseases. Extensive experiments on a dedicated benchmark demonstrate that DentalX significantly outperforms prior methods in both tasks. This mutual benefit arises naturally during model optimization, as the correlation between the two tasks is effectively captured. Our code is available at https://github.com/zhiqin1998/DentYOLOX.

Published: January 13, 2026

Last updated: January 13, 2026

DGAE: Diffusion-Guided Autoencoder for Efficient Latent Representation Learning

Dongxu Liu, Jiahui Zhu, Yuang Peng, Haomiao Tang, Yuwei Chen, Chunrui Han, Zheng Ge, Daxin Jiang, Mingxue Liao (cs.CV, cs.AI)

Autoencoders empower state-of-the-art image and video generative models by compressing pixels into a latent space through visual tokenization. Although recent advances have alleviated the performance degradation of autoencoders under high compression ratios, addressing the training instability caused by GAN remains an open challenge. While improving spatial compression, we also aim to minimize the latent space dimensionality, enabling more efficient and compact representations. To tackle these challenges, we focus on improving the decoder's expressiveness. Concretely, we propose DGAE, which employs a diffusion model to guide the decoder in recovering informative signals that are not fully decoded from the latent representation. With this design, DGAE effectively mitigates the performance degradation under high spatial compression rates. At the same time, DGAE achieves state-of-the-art performance with a 2x smaller latent space. When integrated with Diffusion Models, DGAE demonstrates competitive performance on image generation for ImageNet-1K and shows that this compact latent representation facilitates faster convergence of the diffusion model.

Published: June 11, 2025

Last updated: January 13, 2026

Stability of Primal-Dual Gradient Flow Dynamics for Multi-Block Convex Optimization Problems

Ibrahim K. Ozaslan, Panagiotis Patrinos, Mihailo R. Jovanović (math.OC, cs.AI, cs.LG, eess.SY)

We examine stability properties of primal-dual gradient flow dynamics for composite convex optimization problems with multiple, possibly nonsmooth, terms in the objective function under the generalized consensus constraint. The proposed dynamics are based on the proximal augmented Lagrangian and they provide a viable alternative to ADMM which faces significant challenges from both analysis and implementation viewpoints in large-scale multi-block scenarios. In contrast to customized algorithms with individualized convergence guarantees, we develop a systematic approach for solving a broad class of challenging composite optimization problems. We leverage various structural properties to establish global (exponential) convergence guarantees for the proposed dynamics. Our assumptions are much weaker than those required to prove (exponential) stability of primal-dual dynamics as well as (linear) convergence of discrete-time methods such as standard two-block and multi-block ADMM and EXTRA algorithms. Finally, we show necessity of some of our structural assumptions for exponential stability and provide computational experiments to demonstrate the convenience of the proposed approach for parallel and distributed computing applications.

Published: August 28, 2024

Last updated: January 13, 2026

A Vision for Multisensory Intelligence: Sensing, Science, and Synergy

Paul Pu Liang (cs.LG, cs.AI, cs.CL, cs.CV)

Our experience of the world is multisensory, spanning a synthesis of language, sight, sound, touch, taste, and smell. Yet, artificial intelligence has primarily advanced in digital modalities like text, vision, and audio. This paper outlines a research vision for multisensory artificial intelligence over the next decade. This new set of technologies can change how humans and AI experience and interact with one another, by connecting AI to the human senses and a rich spectrum of signals from physiological and tactile cues on the body, to physical and social signals in homes, cities, and the environment. We outline how this field must advance through three interrelated themes of sensing, science, and synergy. Firstly, research in sensing should extend how AI captures the world in richer ways beyond the digital medium. Secondly, developing a principled science for quantifying multimodal heterogeneity and interactions, developing unified modeling architectures and representations, and understanding cross-modal transfer. Finally, we present new technical challenges to learn synergy between modalities and between humans and AI, covering multisensory integration, alignment, reasoning, generation, generalization, and experience. Accompanying this vision paper are a series of projects, resources, and demos of latest advances from the Multisensory Intelligence group at the MIT Media Lab, see https://mit-mi.github.io/.

Published: January 08, 2026

Last updated: January 13, 2026

Aggregating Diverse Cue Experts for AI-Generated Image Detection

Lei Tan, Shuwei Li, Mohan Kankanhalli, Robby T. Tan (cs.CV)

The rapid emergence of image synthesis models poses challenges to the generalization of AI-generated image detectors. However, existing methods often rely on model-specific features, leading to overfitting and poor generalization. In this paper, we introduce the Multi-Cue Aggregation Network (MCAN), a novel framework that integrates different yet complementary cues in a unified network. MCAN employs a mixture-of-encoders adapter to dynamically process these cues, enabling more adaptive and robust feature representation. Our cues include the input image itself, which represents the overall content, and high-frequency components that emphasize edge details. Additionally, we introduce a Chromatic Inconsistency (CI) cue, which normalizes intensity values and captures noise information introduced during the image acquisition process in real images, making these noise patterns more distinguishable from those in AI-generated content. Unlike prior methods, MCAN's novelty lies in its unified multi-cue aggregation framework, which integrates spatial, frequency-domain, and chromaticity-based information for enhanced representation learning. These cues are intrinsically more indicative of real images, enhancing cross-model generalization. Extensive experiments on the GenImage, Chameleon, and UniversalFakeDetect benchmark validate the state-of-the-art performance of MCAN. In the GenImage dataset, MCAN outperforms the best state-of-the-art method by up to 7.4% in average ACC across eight different image generators.

Published: January 13, 2026

Last updated: January 13, 2026

The Molecular Structure of Thought: Mapping the Topology of Long Chain-of-Thought Reasoning

Qiguang Chen, Yantao Du, Ziniu Li, Jinhao Liu, Songyao Duan, Jiarui Guo, Minghao Liu, Jiaheng Liu, Tong Yang, Ge Zhang, Libo Qin, Wanxiang Che, Wenhao Huang (cs.CL, cs.AI)

Large language models (LLMs) often fail to learn effective long chain-of-thought (Long CoT) reasoning from human or non-Long-CoT LLMs imitation. To understand this, we propose that effective and learnable Long CoT trajectories feature stable molecular-like structures in unified view, which are formed by three interaction types: Deep-Reasoning (covalent-like), Self-Reflection (hydrogen-bond-like), and Self-Exploration (van der Waals-like). Analysis of distilled trajectories reveals these structures emerge from Long CoT fine-tuning, not keyword imitation. We introduce Effective Semantic Isomers and show that only bonds promoting fast entropy convergence support stable Long CoT learning, while structural competition impairs training. Drawing on these findings, we present Mole-Syn, a distribution-transfer-graph method that guides synthesis of effective Long CoT structures, boosting performance and RL stability across benchmarks.

Published: January 09, 2026

Last updated: January 13, 2026

SafePro: Evaluating the Safety of Professional-Level AI Agents

Kaiwen Zhou, Shreedhar Jangam, Ashwin Nagarajan, Tejas Polu, Suhas Oruganti, Chengzhi Liu, Ching-Chen Kuo, Yuting Zheng, Sravana Narayanaraju, Xin Eric Wang (cs.AI)

Large language model-based agents are rapidly evolving from simple conversational assistants into autonomous systems capable of performing complex, professional-level tasks in various domains. While these advancements promise significant productivity gains, they also introduce critical safety risks that remain under-explored. Existing safety evaluations primarily focus on simple, daily assistance tasks, failing to capture the intricate decision-making processes and potential consequences of misaligned behaviors in professional settings. To address this gap, we introduce SafePro, a comprehensive benchmark designed to evaluate the safety alignment of AI agents performing professional activities. SafePro features a dataset of high-complexity tasks across diverse professional domains with safety risks, developed through a rigorous iterative creation and review process. Our evaluation of state-of-the-art AI models reveals significant safety vulnerabilities and uncovers new unsafe behaviors in professional contexts. We further show that these models exhibit both insufficient safety judgment and weak safety alignment when executing complex professional tasks. In addition, we investigate safety mitigation strategies for improving agent safety in these scenarios and observe encouraging improvements. Together, our findings highlight the urgent need for robust safety mechanisms tailored to the next generation of professional AI agents.

Published: January 10, 2026

Last updated: January 13, 2026

FastFLUX: Pruning FLUX with Block-wise Replacement and Sandwich Training

Fuhan Cai, Yong Guo, Jie Li, Wenbo Li, Jian Chen, Xiangzhong Fang (cs.GR, cs.AI)

Recent advancements in text-to-image (T2I) generation have led to the emergence of highly expressive models such as diffusion transformers (DiTs), exemplified by FLUX. However, their massive parameter sizes lead to slow inference, high memory usage, and poor deployability. Existing acceleration methods (e.g., single-step distillation and attention pruning) often suffer from significant performance degradation and incur substantial training costs. To address these limitations, we propose FastFLUX, an architecture-level pruning framework designed to enhance the inference efficiency of FLUX. At its core is the Block-wise Replacement with Linear Layers (BRLL) method, which replaces structurally complex residual branches in ResBlocks with lightweight linear layers while preserving the original shortcut connections for stability. Furthermore, we introduce Sandwich Training (ST), a localized fine-tuning strategy that leverages LoRA to supervise neighboring blocks, mitigating performance drops caused by structural replacement. Experiments show that our FastFLUX maintains high image quality under both qualitative and quantitative evaluations, while significantly improving inference speed, even with 20\% of the hierarchy pruned. Our code will be available soon.

Published: June 10, 2025

Last updated: January 13, 2026

Uncovering Political Bias in Large Language Models using Parliamentary Voting Records

Jieying Chen, Karen de Jong, Andreas Poole, Jan Burakowski, Elena Elderson Nosti, Joep Windt, Chendi Wang (cs.AI)

As large language models (LLMs) become deeply embedded in digital platforms and decision-making systems, concerns about their political biases have grown. While substantial work has examined social biases such as gender and race, systematic studies of political bias remain limited, despite their direct societal impact. This paper introduces a general methodology for constructing political bias benchmarks by aligning model-generated voting predictions with verified parliamentary voting records. We instantiate this methodology in three national case studies: PoliBiasNL (2,701 Dutch parliamentary motions and votes from 15 political parties), PoliBiasNO (10,584 motions and votes from 9 Norwegian parties), and PoliBiasES (2,480 motions and votes from 10 Spanish parties). Across these benchmarks, we assess ideological tendencies and political entity bias in LLM behavior. As part of our evaluation framework, we also propose a method to visualize the ideology of LLMs and political parties in a shared two-dimensional CHES (Chapel Hill Expert Survey) space by linking their voting-based positions to the CHES dimensions, enabling direct and interpretable comparisons between models and real-world political actors. Our experiments reveal fine-grained ideological distinctions: state-of-the-art LLMs consistently display left-leaning or centrist tendencies, alongside clear negative biases toward right-conservative parties. These findings highlight the value of transparent, cross-national evaluation grounded in real parliamentary behavior for understanding and auditing political bias in modern LLMs.

Published: January 13, 2026

Last updated: January 13, 2026

On the use of graph models to achieve individual and group fairness

Arturo Pérez-Peralta, Sandra Benítez-Peña, Rosa E. Lillo (stat.ML, cs.CY, cs.LG)

Machine Learning algorithms are ubiquitous in key decision-making contexts such as justice, healthcare and finance, which has spawned a great demand for fairness in these procedures. However, the theoretical properties of such models in relation with fairness are still poorly understood, and the intuition behind the relationship between group and individual fairness is still lacking. In this paper, we provide a theoretical framework based on Sheaf Diffusion to leverage tools based on dynamical systems and homology to model fairness. Concretely, the proposed method projects input data into a bias-free space that encodes fairness constrains, resulting in fair solutions. Furthermore, we present a collection of network topologies handling different fairness metrics, leading to a unified method capable of dealing with both individual and group bias. The resulting models have a layer of interpretability in the form of closed-form expressions for their SHAP values, consolidating their place in the responsible Artificial Intelligence landscape. Finally, these intuitions are tested on a simulation study and standard fairness benchmarks, where the proposed methods achieve satisfactory results. More concretely, the paper showcases the performance of the proposed models in terms of accuracy and fairness, studying available trade-offs on the Pareto frontier, checking the effects of changing the different hyper-parameters, and delving into the interpretation of its outputs.

Published: January 13, 2026

Last updated: January 13, 2026

Incentivizing Multi-Tenant Split Federated Learning for Foundation Models at the Network Edge

Songyuan Li, Jia Hu, Geyong Min, Haojun Huang (cs.LG, cs.AI, cs.DC, cs.MA)

Foundation models (FMs) such as GPT-4 exhibit exceptional generative capabilities across diverse downstream tasks through fine-tuning. Split Federated Learning (SFL) facilitates privacy-preserving FM fine-tuning on resource-constrained local devices by offloading partial FM computations to edge servers, enabling device-edge synergistic fine-tuning. Practical edge networks often host multiple SFL tenants to support diversified downstream tasks. However, existing research primarily focuses on single-tenant SFL scenarios, and lacks tailored incentive mechanisms for multi-tenant settings, which are essential to effectively coordinate self-interested local devices for participation in various downstream tasks, ensuring that each SFL tenant's distinct FM fine-tuning requirements (e.g., FM types, performance targets, and fine-tuning deadlines) are met. To address this gap, we propose a novel Price-Incentive Mechanism (PRINCE) that guides multiple SFL tenants to offer strategic price incentives, which solicit high-quality device participation for efficient FM fine-tuning. Specifically, we first develop a bias-resilient global SFL model aggregation scheme to eliminate model biases caused by independent device participation. We then derive a rigorous SFL convergence bound to evaluate the contributions of heterogeneous devices to FM performance improvements, guiding the incentive strategies of SFL tenants. Furthermore, we model inter-tenant device competition as a congestion game for Stackelberg equilibrium (SE) analysis, deriving each SFL tenant's optimal incentive strategy. Extensive simulations involving four representative SFL tenant types (ViT, BERT, Whisper, and LLaMA) across diverse data modalities (text, images, and audio) demonstrate that PRINCE accelerates FM fine-tuning by up to 3.07x compared to state-of-the-art approaches, while consistently meeting fine-tuning performance targets.

Published: March 06, 2025

Last updated: January 13, 2026

Fast and explainable clustering in the Manhattan and Tanimoto distance

Stefan Güttel, Kaustubh Roy (cs.LG)

The CLASSIX algorithm is a fast and explainable approach to data clustering. In its original form, this algorithm exploits the sorting of the data points by their first principal component to truncate the search for nearby data points, with nearness being defined in terms of the Euclidean distance. Here we extend CLASSIX to other distance metrics, including the Manhattan distance and the Tanimoto distance. Instead of principal components, we use an appropriate norm of the data vectors as the sorting criterion, combined with the triangle inequality for search termination. In the case of Tanimoto distance, a provably sharper intersection inequality is used to further boost the performance of the new algorithm. On a real-world chemical fingerprint benchmark, CLASSIX Tanimoto is about 30 times faster than the Taylor--Butina algorithm, and about 80 times faster than DBSCAN, while computing higher-quality clusters in both cases.

Published: January 13, 2026

Last updated: January 13, 2026

Pervasive Annotation Errors Break Text-to-SQL Benchmarks and Leaderboards

Tengjun Jin, Yoojin Choi, Yuxuan Zhu, Daniel Kang (cs.AI, cs.DB)

Researchers have proposed numerous text-to-SQL techniques to streamline data analytics and accelerate the development of database-driven applications. To compare these techniques and select the best one for deployment, the community depends on public benchmarks and their leaderboards. Since these benchmarks heavily rely on human annotations during question construction and answer evaluation, the validity of the annotations is crucial. In this paper, we conduct an empirical study that (i) benchmarks annotation error rates for two widely used text-to-SQL benchmarks, BIRD and Spider 2.0-Snow, and (ii) corrects a subset of the BIRD development (Dev) set to measure the impact of annotation errors on text-to-SQL agent performance and leaderboard rankings. Through expert analysis, we show that BIRD Mini-Dev and Spider 2.0-Snow have error rates of 52.8

Published: January 13, 2026

Last updated: January 13, 2026

Asymptotic Universal Alignment: A New Alignment Framework via Test-Time Scaling

Yang Cai, Weiqiang Zheng (cs.LG, cs.AI, cs.CL, cs.GT)

Aligning large language models (LLMs) to serve users with heterogeneous and potentially conflicting preferences is a central challenge for personalized and trustworthy AI. We formalize an ideal notion of universal alignment through test-time scaling: for each prompt, the model produces k≥ 1 candidate responses and a user selects their preferred one. We introduce (k,f(k))-robust alignment, which requires the k-output model to have win rate f(k) against any other single-output model, and asymptotic universal alignment (U-alignment), which requires f(k)→ 1 as k→∞. Our main result characterizes the optimal convergence rate: there exists a family of single-output policies whose k-sample product policies achieve U-alignment at rate f(k)=k/k+1, and no method can achieve a faster rate in general. We show that popular post-training methods, including Nash learning from human feedback (NLHF), can fundamentally underutilize the benefits of test-time scaling. Even though NLHF is optimal for k=1, sampling from the resulting (often deterministic) policy cannot guarantee win rates above 12 except for an arbitrarily small slack. This stems from a lack of output diversity: existing alignment methods can collapse to a single majority-preferred response, making additional samples redundant. In contrast, our approach preserves output diversity and achieves the optimal test-time scaling rate. In particular, we propose a family of symmetric multi-player alignment games and prove that any symmetric Nash equilibrium policy of the (k+1)-player alignment game achieves the optimal (k,k/k+1)-robust alignment. Finally, we provide theoretical convergence guarantees for self-play learning dynamics in these games and extend the framework to opponents that also generate multiple responses.

Published: January 13, 2026

Last updated: January 13, 2026

Translating Light-Sheet Microscopy Images to Virtual H&E Using CycleGAN

Yanhua Zhao (cs.CV, cs.AI)

Histopathology analysis relies on Hematoxylin and Eosin (H&E) staining, but fluorescence microscopy offers complementary information. Converting fluorescence images to H&E-like appearance can aid interpretation and integration with standard workflows. We present a Cycle-Consistent Adversarial Network (CycleGAN) approach for unpaired image-to-image translation from multi-channel fluorescence microscopy to pseudo H&E stained histopathology images. The method combines C01 and C02 fluorescence channels into RGB and learns a bidirectional mapping between fluorescence and H&E domains without paired training data. The architecture uses ResNet-based generators with residual blocks and PatchGAN discriminators, trained with adversarial, cycle-consistency, and identity losses. Experiments on fluorescence microscopy datasets show the model generates realistic pseudo H&E images that preserve morphological structures while adopting H&E-like color characteristics. This enables visualization of fluorescence data in a format familiar to pathologists and supports integration with existing H&E-based analysis pipelines.

Published: January 13, 2026

Last updated: January 13, 2026

Reliable Graph-RAG for Codebases: AST-Derived Graphs vs LLM-Extracted Knowledge Graphs

Manideep Reddy Chinthareddy (cs.SE, cs.AI)

Retrieval-Augmented Generation for software engineering often relies on vector similarity search, which captures topical similarity but can fail on multi-hop architectural reasoning such as controller to service to repository chains, interface-driven wiring, and inheritance. This paper benchmarks three retrieval pipelines on Java codebases (Shopizer, with additional runs on ThingsBoard and OpenMRS Core): (A) vector-only No-Graph RAG, (B) an LLM-generated knowledge graph RAG (LLM-KB), and (C) a deterministic AST-derived knowledge graph RAG (DKB) built with Tree-sitter and bidirectional traversal. Using 15 architecture and code-tracing queries per repository, we measure indexing time, query latency, corpus coverage, cost, and answer correctness. DKB builds its graph in seconds, while LLM-KB requires much longer graph generation. LLM-KB also shows indexing incompleteness: on Shopizer, 377 files are skipped or missed, reducing embedded chunk coverage and graph size compared to DKB. End-to-end cost is modest for DKB relative to the vector-only baseline but much higher for LLM-KB, especially as repository scale increases. Query latency is similar for No-Graph and DKB, while LLM-KB is slower and more variable. On the Shopizer question suite, DKB achieves the highest correctness, LLM-KB is close behind, and the vector-only baseline performs worst on upstream architectural queries and has the highest hallucination risk. Overall, deterministic AST-derived graphs provide more reliable coverage and multi-hop grounding than LLM-extracted graphs at substantially lower indexing cost.

Published: January 13, 2026

Last updated: January 13, 2026

AI as Entertainment

Cody Kommers, Ari Holtzman (cs.AI, cs.CY)

Generative AI systems are predominantly designed, evaluated, and marketed as intelligent systems which will benefit society by augmenting or automating human cognitive labor, promising to increase personal, corporate, and macroeconomic productivity. But this mainstream narrative about what AI is and what it can do is in tension with another emerging use case: entertainment. We argue that the field of AI is unprepared to measure or respond to how the proliferation of entertaining AI-generated content will impact society. Emerging data suggest AI is already widely adopted for entertainment purposes -- especially by young people -- and represents a large potential source of revenue. We contend that entertainment will become a primary business model for major AI corporations seeking returns on massive infrastructure investments; this will exert a powerful influence on the technology these companies produce in the coming years. Examining current evaluation practices, we identify a critical asymmetry: while AI assessments rigorously measure both benefits and harms of intelligence, they focus almost exclusively on cultural harms. We lack frameworks for articulating how cultural outputs might be actively beneficial. Drawing on insights from the humanities, we propose "thick entertainment" as a framework for evaluating AI-generated cultural content -- one that considers entertainment's role in meaning-making, identity formation, and social connection rather than simply minimizing harm. While AI is often touted for its potential to revolutionize productivity, in the long run we may find that AI turns out to be as much about "intelligence" as social media is about social connection.

Published: January 13, 2026

Last updated: January 13, 2026

STELP: Secure Transpilation and Execution of LLM-Generated Programs

Swapnil Shinde, Sahil Wadhwa, Andy Luo, Akshay Gupta, Mohammad Shahed Sorower (cs.SE, cs.AI)

Rapid evolution of Large Language Models (LLMs) has achieved major advances in reasoning, planning, and function-calling capabilities. Multi-agentic collaborative frameworks using such LLMs place them at the center of solving software development-related tasks such as code generation. However, direct use of LLM generated code in production software development systems is problematic. The code could be unstable or erroneous and contain vulnerabilities such as data poisoning, malicious attacks, and hallucinations that could lead to widespread system malfunctions. This prohibits the adoption of LLM generated code in production AI systems where human code reviews and traditional secure testing tools are impractical or untrustworthy. In this paper, we discuss safety and reliability problems with the execution of LLM generated code and propose a Secure Transpiler and Executor of LLM-Generated Program (STELP), capable of executing LLM-generated code in a controlled and safe manner. STELP secures autonomous production AI systems involving code generation, filling the critical void left by the impracticality or limitations of traditional secure testing methodologies and human oversight. This includes applications such as headless code generation-execution and LLMs that produce executable code snippets as an action plan to be executed in real time. We contribute a human-validated dataset of insecure code snippets and benchmark our approach on publicly available datasets for correctness, safety, and latency. Our results demonstrate that our approach outperforms an existing method by a significant margin, particularly in its ability to safely execute risky code snippets. Warning: This paper contains malicious code snippets that should be run with caution.

Published: January 09, 2026

Last updated: January 13, 2026

Comparative validation of surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation in endoscopy: Results of the PhaKIR 2024 challenge

Tobias Rueckert, David Rauber, Raphaela Maerkl, Leonard Klausmann, Suemeyye R. Yildiran, Max Gutbrod, Danilo Weber Nunes, Alvaro Fernandez Moreno, Imanol Luengo, Danail Stoyanov, Nicolas Toussaint, Enki Cho, Hyeon Bae Kim, Oh Sung Choo, Ka Young Kim, Seong Tae Kim, Gonçalo Arantes, Kehan Song, Jianjun Zhu, Junchen Xiong, Tingyi Lin, Shunsuke Kikuchi, Hiroki Matsuzaki, Atsushi Kouno, João Renato Ribeiro Manesco, João Paulo Papa, Tae-Min Choi, Tae Kyeong Jeong, Juyoun Park, Oluwatosin Alabi, Meng Wei, Tom Vercauteren, Runzhi Wu, Mengya Xu, An Wang, Long Bai, Hongliang Ren, Amine Yamlahi, Jakob Hennighausen, Lena Maier-Hein, Satoshi Kondo, Satoshi Kasai, Kousuke Hirasawa, Shu Yang, Yihui Wang, Hao Chen, Santiago Rodríguez, Nicolás Aparicio, Leonardo Manrique, Juan Camilo Lyons, Olivia Hosie, Nicolás Ayobi, Pablo Arbeláez, Yiping Li, Yasmina Al Khalil, Sahar Nasirihaghighi, Stefanie Speidel, Daniel Rueckert, Hubertus Feussner, Dirk Wilhelm, Christoph Palm (cs.CV)

Reliable recognition and localization of surgical instruments in endoscopic video recordings are foundational for a wide range of applications in computer- and robot-assisted minimally invasive surgery (RAMIS), including surgical training, skill assessment, and autonomous assistance. However, robust performance under real-world conditions remains a significant challenge. Incorporating surgical context - such as the current procedural phase - has emerged as a promising strategy to improve robustness and interpretability. To address these challenges, we organized the Surgical Procedure Phase, Keypoint, and Instrument Recognition (PhaKIR) sub-challenge as part of the Endoscopic Vision (EndoVis) challenge at MICCAI 2024. We introduced a novel, multi-center dataset comprising thirteen full-length laparoscopic cholecystectomy videos collected from three distinct medical institutions, with unified annotations for three interrelated tasks: surgical phase recognition, instrument keypoint estimation, and instrument instance segmentation. Unlike existing datasets, ours enables joint investigation of instrument localization and procedural context within the same data while supporting the integration of temporal information across entire procedures. We report results and findings in accordance with the BIAS guidelines for biomedical image analysis challenges. The PhaKIR sub-challenge advances the field by providing a unique benchmark for developing temporally aware, context-driven methods in RAMIS and offers a high-quality resource to support future research in surgical scene understanding.

Published: July 22, 2025

Last updated: January 13, 2026

Rewarding the Rare: Uniqueness-Aware RL for Creative Problem Solving in LLMs

Zhiyuan Hu, Yucheng Wang, Yufei He, Jiaying Wu, Yilun Zhao, See-Kiong Ng, Cynthia Breazeal, Anh Tuan Luu, Hae Won Park, Bryan Hooi (cs.LG, cs.CL)

Reinforcement learning (RL) has become a central paradigm for post-training large language models (LLMs), particularly for complex reasoning tasks, yet it often suffers from exploration collapse: policies prematurely concentrate on a small set of dominant reasoning patterns, improving pass@1 while limiting rollout-level diversity and gains in pass@k. We argue that this failure stems from regularizing local token behavior rather than diversity over sets of solutions. To address this, we propose Uniqueness-Aware Reinforcement Learning, a rollout-level objective that explicitly rewards correct solutions that exhibit rare high-level strategies. Our method uses an LLM-based judge to cluster rollouts for the same problem according to their high-level solution strategies, ignoring superficial variations, and reweights policy advantages inversely with cluster size. As a result, correct but novel strategies receive higher rewards than redundant ones. Across mathematics, physics, and medical reasoning benchmarks, our approach consistently improves pass@k across large sampling budgets and increases the area under the pass@k curve (AUC@K) without sacrificing pass@1, while sustaining exploration and uncovering more diverse solution strategies at scale.

Published: January 13, 2026

Last updated: January 13, 2026

MDReID: Modality-Decoupled Learning for Any-to-Any Multi-Modal Object Re-Identification

Yingying Feng, Jie Li, Jie Hu, Yukang Zhang, Lei Tan, Jiayi Ji (cs.CV)

Real-world object re-identification (ReID) systems often face modality inconsistencies, where query and gallery images come from different sensors (e.g., RGB, NIR, TIR). However, most existing methods assume modality-matched conditions, which limits their robustness and scalability in practical applications. To address this challenge, we propose MDReID, a flexible any-to-any image-level ReID framework designed to operate under both modality-matched and modality-mismatched scenarios. MDReID builds on the insight that modality information can be decomposed into two components: modality-shared features that are predictable and transferable, and modality-specific features that capture unique, modality-dependent characteristics. To effectively leverage this, MDReID introduces two key components: the Modality Decoupling Learning (MDL) and Modality-aware Metric Learning (MML). Specifically, MDL explicitly decomposes modality features into modality-shared and modality-specific representations, enabling effective retrieval in both modality-aligned and mismatched scenarios. MML, a tailored metric learning strategy, further enforces orthogonality and complementarity between the two components to enhance discriminative power across modalities. Extensive experiments conducted on three challenging multi-modality ReID benchmarks (RGBNT201, RGBNT100, MSVR310) consistently demonstrate the superiority of MDReID. Notably, MDReID achieves significant mAP improvements of 9.8%, 3.0%, and 11.5% in general modality-matched scenarios, and average gains of 3.4%, 11.8%, and 10.9% in modality-mismatched scenarios, respectively. The code is available at: https://github.com/stone96123/MDReID.

Published: October 27, 2025

Last updated: January 13, 2026

Adaptive Requesting in Decentralized Edge Networks via Non-Stationary Bandits

Yi Zhuang, Kun Yang, Xingran Chen (cs.LG, cs.MA)

We study a decentralized collaborative requesting problem that aims to optimize the information freshness of time-sensitive clients in edge networks consisting of multiple clients, access nodes (ANs), and servers. Clients request content through ANs acting as gateways, without observing AN states or the actions of other clients. We define the reward as the age of information reduction resulting from a client's selection of an AN, and formulate the problem as a non-stationary multi-armed bandit. In this decentralized and partially observable setting, the resulting reward process is history-dependent and coupled across clients, and exhibits both abrupt and gradual changes in expected rewards, rendering classical bandit-based approaches ineffective. To address these challenges, we propose the AGING BANDIT WITH ADAPTIVE RESET algorithm, which combines adaptive windowing with periodic monitoring to track evolving reward distributions. We establish theoretical performance guarantees showing that the proposed algorithm achieves near-optimal performance, and we validate the theoretical results through simulations.

Published: January 13, 2026

Last updated: January 13, 2026

M3CoTBench: Benchmark Chain-of-Thought of MLLMs in Medical Image Understanding

Juntao Jiang, Jiangning Zhang, Yali Bi, Jinsheng Bai, Weixuan Liu, Weiwei Jin, Zhucun Xue, Yong Liu, Xiaobin Hu, Shuicheng Yan (eess.IV, cs.CV)

Chain-of-Thought (CoT) reasoning has proven effective in enhancing large language models by encouraging step-by-step intermediate reasoning, and recent advances have extended this paradigm to Multimodal Large Language Models (MLLMs). In the medical domain, where diagnostic decisions depend on nuanced visual cues and sequential reasoning, CoT aligns naturally with clinical thinking processes. However, Current benchmarks for medical image understanding generally focus on the final answer while ignoring the reasoning path. An opaque process lacks reliable bases for judgment, making it difficult to assist doctors in diagnosis. To address this gap, we introduce a new M3CoTBench benchmark specifically designed to evaluate the correctness, efficiency, impact, and consistency of CoT reasoning in medical image understanding. M3CoTBench features 1) a diverse, multi-level difficulty dataset covering 24 examination types, 2) 13 varying-difficulty tasks, 3) a suite of CoT-specific evaluation metrics (correctness, efficiency, impact, and consistency) tailored to clinical reasoning, and 4) a performance analysis of multiple MLLMs. M3CoTBench systematically evaluates CoT reasoning across diverse medical imaging tasks, revealing current limitations of MLLMs in generating reliable and clinically interpretable reasoning, and aims to foster the development of transparent, trustworthy, and diagnostically accurate AI systems for healthcare. Project page at https://juntaojianggavin.github.io/projects/M3CoTBench/.

Published: January 13, 2026

Last updated: January 13, 2026

Hybrid Reward-Driven Reinforcement Learning for Efficient Quantum Circuit Synthesis

Sara Giordano, Kornikar Sen, Miguel A. Martin-Delgado (quant-ph, cs.AI, cs.LG)

A reinforcement learning (RL) framework is introduced for the efficient synthesis of quantum circuits that generate specified target quantum states from a fixed initial state, addressing a central challenge in both the Noisy Intermediate-Scale Quantum (NISQ) era and future fault-tolerant quantum computing. The approach utilizes tabular Q-learning, based on action sequences, within a discretized quantum state space, to effectively manage the exponential growth of the space dimension.The framework introduces a hybrid reward mechanism, combining a static, domain-informed reward that guides the agent toward the target state with customizable dynamic penalties that discourage inefficient circuit structures such as gate congestion and redundant state revisits. This is a circuit-aware reward, in contrast to the current trend of works on this topic, which are primarily fidelity-based. By leveraging sparse matrix representations and state-space discretization, the method enables practical navigation of high-dimensional environments while minimizing computational overhead. Benchmarking on graph-state preparation tasks for up to seven qubits, we demonstrate that the algorithm consistently discovers minimal-depth circuits with optimized gate counts. Moreover, extending the framework to a universal gate set still yields low depth circuits, highlighting the algorithm robustness and adaptability. The results confirm that this RL-driven approach, with our completely circuit-aware method, efficiently explores the complex quantum state space and synthesizes near-optimal quantum circuits, providing a resource-efficient foundation for quantum circuit optimization.

Published: July 22, 2025

Last updated: January 13, 2026

Analog In-memory Training on General Non-ideal Resistive Elements: The Impact of Response Functions

Zhaoxian Wu, Quan Xiao, Tayfun Gokmen, Omobayode Fagbohungbe, Tianyi Chen (cs.LG, cs.AR, math.OC)

As the economic and environmental costs of training and deploying large vision or language models increase dramatically, analog in-memory computing (AIMC) emerges as a promising energy-efficient solution. However, the training perspective, especially its training dynamic, is underexplored. In AIMC hardware, the trainable weights are represented by the conductance of resistive elements and updated using consecutive electrical pulses. While the conductance changes by a constant in response to each pulse, in reality, the change is scaled by asymmetric and non-linear response functions, leading to a non-ideal training dynamic. This paper provides a theoretical foundation for gradient-based training on AIMC hardware with non-ideal response functions. We demonstrate that asymmetric response functions negatively impact Analog SGD by imposing an implicit penalty on the objective. To overcome the issue, we propose Residual Learning algorithm, which provably converges exactly to a critical point by solving a bilevel optimization problem. We demonstrate that the proposed method can be extended to address other hardware imperfections, such as limited response granularity. As we know, it is the first paper to investigate the impact of a class of generic non-ideal response functions. The conclusion is supported by simulations validating our theoretical insights.

Published: February 10, 2025

Last updated: January 13, 2026

Grid-Aware Charging and Operational Optimization for Mixed-Fleet Public Transit

Rishav Sen, Amutheezan Sivagnanam, Aron Laszka, Ayan Mukhopadhyay, Abhishek Dubey (math.OC, cs.AI, eess.SY)

The rapid growth of urban populations and the increasing need for sustainable transportation solutions have prompted a shift towards electric buses in public transit systems. However, the effective management of mixed fleets consisting of both electric and diesel buses poses significant operational challenges. One major challenge is coping with dynamic electricity pricing, where charging costs vary throughout the day. Transit agencies must optimize charging assignments in response to such dynamism while accounting for secondary considerations such as seating constraints. This paper presents a comprehensive mixed-integer linear programming (MILP) model to address these challenges by jointly optimizing charging schedules and trip assignments for mixed (electric and diesel bus) fleets while considering factors such as dynamic electricity pricing, vehicle capacity, and route constraints. We address the potential computational intractability of the MILP formulation, which can arise even with relatively small fleets, by employing a hierarchical approach tailored to the fleet composition. By using real-world data from the city of Chattanooga, Tennessee, USA, we show that our approach can result in significant savings in the operating costs of the mixed transit fleets.

Published: January 13, 2026

Last updated: January 13, 2026

MVGGT: Multimodal Visual Geometry Grounded Transformer for Multiview 3D Referring Expression Segmentation

Changli Wu, Haodong Wang, Jiayi Ji, Yutian Yao, Chunsai Du, Jihua Kang, Yanwei Fu, Liujuan Cao (cs.CV)

Most existing 3D referring expression segmentation (3DRES) methods rely on dense, high-quality point clouds, while real-world agents such as robots and mobile phones operate with only a few sparse RGB views and strict latency constraints. We introduce Multi-view 3D Referring Expression Segmentation (MV-3DRES), where the model must recover scene structure and segment the referred object directly from sparse multi-view images. Traditional two-stage pipelines, which first reconstruct a point cloud and then perform segmentation, often yield low-quality geometry, produce coarse or degraded target regions, and run slowly. We propose the Multimodal Visual Geometry Grounded Transformer (MVGGT), an efficient end-to-end framework that integrates language information into sparse-view geometric reasoning through a dual-branch design. Training in this setting exposes a critical optimization barrier, termed Foreground Gradient Dilution (FGD), where sparse 3D signals lead to weak supervision. To resolve this, we introduce Per-view No-target Suppression Optimization (PVSO), which provides stronger and more balanced gradients across views, enabling stable and efficient learning. To support consistent evaluation, we build MVRefer, a benchmark that defines standardized settings and metrics for MV-3DRES. Experiments show that MVGGT establishes the first strong baseline and achieves both high accuracy and fast inference, outperforming existing alternatives. Code and models are publicly available at https://mvggt.github.io.

Published: January 11, 2026

Last updated: January 13, 2026

Spatial Context Improves the Integration of Text with Remote Sensing for Mapping Environmental Variables

Valerie Zermatten, Chiara Vanalli, Gencer Sumbul, Diego Marcos, Devis Tuia (cs.CL)

Recent developments in natural language processing highlight text as an emerging data source for ecology. Textual resources carry unique information that can be used in complementarity with geospatial data sources, thus providing insights at the local scale into environmental conditions and properties hidden from more traditional data sources. Leveraging textual information in a spatial context presents several challenges. First, the contribution of textual data remains poorly defined in an ecological context, and it is unclear for which tasks it should be incorporated. Unlike ubiquitous satellite imagery or environmental covariates, the availability of textual data is sparse and irregular; its integration with geospatial data is not straightforward. In response to these challenges, this work proposes an attention-based approach that combines aerial imagery and geolocated text within a spatial neighbourhood, i.e. integrating contributions from several nearby observations. Our approach combines vision and text representations with a geolocation encoding, with an attention-based module that dynamically selects spatial neighbours that are useful for predictive tasks.The proposed approach is applied to the EcoWikiRS dataset, which combines high-resolution aerial imagery with sentences extracted from Wikipedia describing local environmental conditions across Switzerland. Our model is evaluated on the task of predicting 103 environmental variables from the SWECO25 data cube. Our approach consistently outperforms single-location or unimodal, i.e. image-only or text-only, baselines. When analysing variables by thematic groups, results show a significant improvement in performance for climatic, edaphic, population and land use/land cover variables, underscoring the benefit of including the spatial context when combining text and image data.

Published: January 13, 2026

Last updated: January 13, 2026

A Single-Parameter Factor-Graph Image Prior

Tianyang Wang, Ender Konukoglu, Hans-Andrea Loeliger (eess.IV, cs.CV, eess.SP)

We propose a novel piecewise smooth image model with piecewise constant local parameters that are automatically adapted to each image. Technically, the model is formulated in terms of factor graphs with NUP (normal with unknown parameters) priors, and the pertinent computations amount to iterations of conjugate-gradient steps and Gaussian message passing. The proposed model and algorithms are demonstrated with applications to denoising and contrast enhancement.

Published: January 13, 2026

Last updated: January 13, 2026

To Retrieve or To Think? An Agentic Approach for Context Evolution

Rubing Chen, Jian Wang, Wenjie Li, Xiao-Yong Wei, Qing Li (cs.CL, cs.AI)

Current context augmentation methods, such as retrieval-augmented generation, are essential for solving knowledge-intensive reasoning tasks.However, they typically adhere to a rigid, brute-force strategy that executes retrieval at every step. This indiscriminate approach not only incurs unnecessary computational costs but also degrades performance by saturating the context with irrelevant noise. To address these limitations, we introduce Agentic Context Evolution (ACE), a framework inspired by human metacognition that dynamically determines whether to seek new evidence or reason with existing knowledge. ACE employs a central orchestrator agent to make decisions strategically via majority voting.It aims to alternate between activating a retriever agent for external retrieval and a reasoner agent for internal analysis and refinement. By eliminating redundant retrieval steps, ACE maintains a concise and evolved context. Extensive experiments on challenging multi-hop QA benchmarks demonstrate that ACE significantly outperforms competitive baselines in accuracy while achieving efficient token consumption.Our work provides valuable insights into advancing context-evolved generation for complex, knowledge-intensive tasks.

Published: January 13, 2026

Last updated: January 13, 2026

TableCache: Primary Foreign Key Guided KV Cache Precomputation for Low Latency Text-to-SQL

Jinbo Su, Yuxuan Hu, Cuiping Li, Hong Chen, Jia Li, Lintao Ma, Jing Zhang (cs.CL, cs.AI)

In Text-to-SQL tasks, existing LLM-based methods often include extensive database schemas in prompts, leading to long context lengths and increased prefilling latency. While user queries typically focus on recurrent table sets-offering an opportunity for KV cache sharing across queries-current inference engines, such as SGLang and vLLM, generate redundant prefix cache copies when processing user queries with varying table orders. To address this inefficiency, we propose precomputing table representations as KV caches offline and querying the required ones online. A key aspect of our approach is the computation of table caches while preserving primary foreign key relationships between tables. Additionally, we construct a Table Trie structure to facilitate efficient KV cache lookups during inference. To enhance cache performance, we introduce a cache management system with a query reranking strategy to improve cache hit rates and a computation loading pipeline for parallelizing model inference and cache loading. Experimental results show that our proposed TableCache achieves up to a 3.62x speedup in Time to First Token (TTFT) with negligible performance degradation.

Published: January 13, 2026

Last updated: January 13, 2026

GSAlign: Geometric and Semantic Alignment Network for Aerial-Ground Person Re-Identification

Qiao Li, Jie Li, Yukang Zhang, Lei Tan, Jing Chen, Jiayi Ji (cs.CV)

Aerial-Ground person re-identification (AG-ReID) is an emerging yet challenging task that aims to match pedestrian images captured from drastically different viewpoints, typically from unmanned aerial vehicles (UAVs) and ground-based surveillance cameras. The task poses significant challenges due to extreme viewpoint discrepancies, occlusions, and domain gaps between aerial and ground imagery. While prior works have made progress by learning cross-view representations, they remain limited in handling severe pose variations and spatial misalignment. To address these issues, we propose a Geometric and Semantic Alignment Network (GSAlign) tailored for AG-ReID. GSAlign introduces two key components to jointly tackle geometric distortion and semantic misalignment in aerial-ground matching: a Learnable Thin Plate Spline (LTPS) Module and a Dynamic Alignment Module (DAM). The LTPS module adaptively warps pedestrian features based on a set of learned keypoints, effectively compensating for geometric variations caused by extreme viewpoint changes. In parallel, the DAM estimates visibility-aware representation masks that highlight visible body regions at the semantic level, thereby alleviating the negative impact of occlusions and partial observations in cross-view correspondence. A comprehensive evaluation on CARGO with four matching protocols demonstrates the effectiveness of GSAlign, achieving significant improvements of +18.8\% in mAP and +16.8\% in Rank-1 accuracy over previous state-of-the-art methods on the aerial-ground setting.

Published: October 25, 2025

Last updated: January 13, 2026

Inferring Latent Intentions: Attributional Natural Language Inference in LLM Agents

Xin Quan, Jiafeng Xiong, Marco Valentino, André Freitas (cs.CL)

Attributional inference, the ability to predict latent intentions behind observed actions, is a critical yet underexplored capability for large language models (LLMs) operating in multi-agent environments. Traditional natural language inference (NLI), in fact, fails to capture the nuanced, intention-driven reasoning essential for complex interactive systems. To address this gap, we introduce Attributional NLI (Att-NLI), a framework that extends NLI with principles from social psychology to assess an agent's capacity for abductive intentional inference (generating hypotheses about latent intentions), and subsequent deductive verification (drawing valid logical conclusions). We instantiate Att-NLI via a textual game, Undercover-V, experimenting with three types of LLM agents with varying reasoning capabilities and access to external tools: a standard NLI agent using only deductive inference, an Att-NLI agent employing abductive-deductive inference, and a neuro-symbolic Att-NLI agent performing abductive-deductive inference with external theorem provers. Extensive experiments demonstrate a clear hierarchy of attributional inference capabilities, with neuro-symbolic agents consistently outperforming others, achieving an average win rate of 17.08%. Our results underscore the role that Att-NLI can play in developing agents with sophisticated reasoning capabilities, highlighting, at the same time, the potential impact of neuro-symbolic AI in building rational LLM agents acting in multi-agent environments.

Published: January 13, 2026

Last updated: January 13, 2026

From Rows to Reasoning: A Retrieval-Augmented Multimodal Framework for Spreadsheet Understanding

Anmol Gulati, Sahil Sen, Waqar Sarguroh, Kevin Paul (cs.CL)

Large Language Models (LLMs) struggle to reason over large-scale enterprise spreadsheets containing thousands of numeric rows, multiple linked sheets, and embedded visual content such as charts and receipts. Prior state-of-the-art spreadsheet reasoning approaches typically rely on single-sheet compression or full-context encoding, which limits scalability and fails to reflect how real users interact with complex, multimodal workbooks. We introduce FRTR-Bench, the first large-scale benchmark for multimodal spreadsheet reasoning, comprising 30 enterprise-grade Excel workbooks spanning nearly four million cells and more than 50 embedded images. To address these challenges, we present From Rows to Reasoning (FRTR), an advanced, multimodal retrieval-augmented generation framework that decomposes Excel workbooks into granular row, column, and block embeddings, employs hybrid lexical-dense retrieval with Reciprocal Rank Fusion (RRF), and integrates multimodal embeddings to reason over both numerical and visual information. We tested FRTR on six LLMs, achieving 74% answer accuracy on FRTR-Bench with Claude Sonnet 4.5, a substantial improvement over prior state-of-the-art approaches that reached only 24%. On the SpreadsheetLLM benchmark, FRTR achieved 87% accuracy with GPT-5 while reducing token usage by roughly 50% compared to context-compression methods.

Published: January 13, 2026

Last updated: January 13, 2026

PIE: Performance Interval Estimation for Free-Form Generation Tasks

Chi-Yang Hsu, Alexander Braylan, Yiheng Su, Matthew Lease, Omar Alonso (cs.CL, cs.LG)

Confidence estimation infers a probability for whether each model output is correct or not. While predicting such binary correctness is sensible for tasks with exact answers, free-form generation tasks are often more nuanced, with output quality being both fine-grained and multi-faceted. We thus propose Performance Interval Estimation (PIE) to predict both: 1) point estimates for any arbitrary set of continuous-valued evaluation metrics; and 2) calibrated uncertainty intervals around these point estimates. We then compare two approaches: LLM-as-judge vs. classic regression with confidence estimation features. Evaluation over 11 datasets spans summarization, translation, code generation, function-calling, and question answering. Regression is seen to achieve both: i) lower error point estimates of metric scores; and ii) well-calibrated uncertainty intervals. To support reproduction and follow-on work, we share our data and code.

Published: September 09, 2025

Last updated: January 13, 2026

PrivGemo: Privacy-Preserving Dual-Tower Graph Retrieval for Empowering LLM Reasoning with Memory Augmentation

Xingyu Tan, Xiaoyang Wang, Qing Liu, Xiwei Xu, Xin Yuan, Liming Zhu, Wenjie Zhang (cs.CL)

Knowledge graphs (KGs) provide structured evidence that can ground large language model (LLM) reasoning for knowledge-intensive question answering. However, many practical KGs are private, and sending retrieved triples or exploration traces to closed-source LLM APIs introduces leakage risk. Existing privacy treatments focus on masking entity names, but they still face four limitations: structural leakage under semantic masking, uncontrollable remote interaction, fragile multi-hop and multi-entity reasoning, and limited experience reuse for stability and efficiency. To address these issues, we propose PrivGemo, a privacy-preserving retrieval-augmented framework for KG-grounded reasoning with memory-guided exposure control. PrivGemo uses a dual-tower design to keep raw KG knowledge local while enabling remote reasoning over an anonymized view that goes beyond name masking to limit both semantic and structural exposure. PrivGemo supports multi-hop, multi-entity reasoning by retrieving anonymized long-hop paths that connect all topic entities, while keeping grounding and verification on the local KG. A hierarchical controller and a privacy-aware experience memory further reduce unnecessary exploration and remote interactions. Comprehensive experiments on six benchmarks show that PrivGemo achieves overall state-of-the-art results, outperforming the strongest baseline by up to 17.1%. Furthermore, PrivGemo enables smaller models (e.g., Qwen3-4B) to achieve reasoning performance comparable to that of GPT-4-Turbo.

Published: January 13, 2026

Last updated: January 13, 2026

TerraFormer: Automated Infrastructure-as-Code with LLMs Fine-Tuned via Policy-Guided Verifier Feedback

Prithwish Jana, Sam Davidson, Bhavana Bhasker, Andrey Kan, Anoop Deoras, Laurent Callot (cs.SE, cs.AI)

Automating Infrastructure-as-Code (IaC) is challenging, and large language models (LLMs) often produce incorrect configurations from natural language (NL). We present TerraFormer, a neuro-symbolic framework for IaC generation and mutation that combines supervised fine-tuning with verifier-guided reinforcement learning, using formal verification tools to provide feedback on syntax, deployability, and policy compliance. We curate two large, high-quality NL-to-IaC datasets, TF-Gen (152k instances) and TF-Mutn (52k instances), via multi-stage verification and iterative LLM self-correction. Evaluations against 17 state-of-the-art LLMs, including ~50x larger models like Sonnet 3.7, DeepSeek-R1, and GPT-4.1, show that TerraFormer improves correctness over its base LLM by 15.94% on IaC-Eval, 11.65% on TF-Gen (Test), and 19.60% on TF-Mutn (Test). It outperforms larger models on both TF-Gen (Test) and TF-Mutn (Test), ranks third on IaC-Eval, and achieves top best-practices and security compliance.

Published: January 13, 2026

Last updated: January 13, 2026

A Computational Social Simulation of Ageing and Care Accessibility in Italian Inner Areas

Roberto garrone (cs.MA)

Ageing societies face increasing strain on formal and informal care systems, particularly in low-density mountainous municipalities where sparse services and steep terrain constrain access. This study presents a spatially explicit agent-based model that integrates a road-network GIS, synthetic populations derived through Iterative Proportional Fitting, and behavioural heterogeneity to examine how alternative service configurations shape accessibility and caregiver burden. The model, applied to Premeno (Piedmont, Italy), compares a baseline distribution of ambulatory services with a relocation scenario at Villa Bernocchi. System-level indicators (Caregiver Effort, Overwhelmed Caregivers, Hours Not Cared, Walkability) and micro-spatial metrics (Walkability, Detour Ratio, Proximity) are analysed across 40 batches and 50 stochastic replications per scenario. Results reveal aggregate neutrality but pronounced local redistribution of accessibility. Sensitivity analysis shows that spatial impedance dominates accessibility, whereas behavioural capacity modulates care effort. The findings illustrate distinctive properties of complex adaptive social systems - emergence, heterogeneity, and feedback - demonstrating how computational social simulation can highlight policy trade-offs between spatial efficiency, social equity, and care sustainability in ageing territories.

Published: September 30, 2025

Last updated: January 13, 2026

A Novel Approach to Explainable AI with Quantized Active Ingredients in Decision Making

A. M. A. S. D. Alagiyawanna, Asoka Karunananda, Thushari Silva, A. Mahasinghe (cs.LG, quant-ph)

Artificial Intelligence (AI) systems have shown good success at classifying. However, the lack of explainability is a true and significant challenge, especially in high-stakes domains, such as health and finance, where understanding is paramount. We propose a new solution to this challenge: an explainable AI framework based on our comparative study with Quantum Boltzmann Machines (QBMs) and Classical Boltzmann Machines (CBMs). We leverage principles of quantum computing within classical machine learning to provide substantive transparency around decision-making. The design involves training both models on a binarised and dimensionally reduced MNIST dataset, where Principal Component Analysis (PCA) is applied for preprocessing. For interpretability, we employ gradient-based saliency maps in QBMs and SHAP (SHapley Additive exPlanations) in CBMs to evaluate feature attributions.QBMs deploy hybrid quantum-classical circuits with strongly entangling layers, allowing for richer latent representations, whereas CBMs serve as a classical baseline that utilises contrastive divergence. Along the way, we found that QBMs outperformed CBMs on classification accuracy (83.5% vs. 54%) and had more concentrated distributions in feature attributions as quantified by entropy (1.27 vs. 1.39). In other words, QBMs not only produced better predictive performance than CBMs, but they also provided clearer identification of "active ingredient" or the most important features behind model predictions. To conclude, our results illustrate that quantum-classical hybrid models can display improvements in both accuracy and interpretability, which leads us toward more trustworthy and explainable AI systems.

Published: January 13, 2026

Last updated: January 13, 2026

ISLA: A U-Net for MRI-based acute ischemic stroke lesion segmentation with deep supervision, attention, domain adaptation, and ensemble learning

Vincent Roca, Martin Bretzner, Hilde Henon, Laurent Puy, Grégory Kuchcinski, Renaud Lopes (cs.CV, cs.AI)

Accurate delineation of acute ischemic stroke lesions in MRI is a key component of stroke diagnosis and management. In recent years, deep learning models have been successfully applied to the automatic segmentation of such lesions. While most proposed architectures are based on the U-Net framework, they primarily differ in their choice of loss functions and in the use of deep supervision, residual connections, and attention mechanisms. Moreover, many implementations are not publicly available, and the optimal configuration for acute ischemic stroke (AIS) lesion segmentation remains unclear. In this work, we introduce ISLA (Ischemic Stroke Lesion Analyzer), a new deep learning model for AIS lesion segmentation from diffusion MRI, trained on three multicenter databases totaling more than 1500 AIS participants. Through systematic optimization of the loss function, convolutional architecture, deep supervision, and attention mechanisms, we developed a robust segmentation framework. We further investigated unsupervised domain adaptation to improve generalization to an external clinical dataset. ISLA outperformed two state-of-the-art approaches for AIS lesion segmentation on an external test set. Codes and trained models will be made publicly available to facilitate reuse and reproducibility.

Published: January 13, 2026

Last updated: January 13, 2026

Quantization Error Propagation: Revisiting Layer-Wise Post-Training Quantization

Yamato Arai, Yuma Ichikawa (cs.LG, stat.AP, stat.ME, stat.ML)

Layer-wise PTQ is a promising technique for compressing large language models (LLMs), due to its simplicity and effectiveness without requiring retraining. However, recent progress in this area is saturating, underscoring the need to revisit its core limitations and explore further improvements. We address this challenge by identifying a key limitation of existing layer-wise PTQ methods: the growth of quantization errors across layers significantly degrades performance, particularly in low-bit regimes. To address this fundamental issue, we propose Quantization Error Propagation (QEP), a general, lightweight, and scalable framework that enhances layer-wise PTQ by explicitly propagating quantization errors and compensating for accumulated errors. QEP also offers a tunable propagation mechanism that prevents overfitting and controls computational overhead, enabling the framework to adapt to various architectures and resource budgets. Extensive experiments on several LLMs demonstrate that QEP-enhanced layer-wise PTQ achieves substantially higher accuracy than existing methods. Notably, the gains are most pronounced in the extremely low-bit quantization regime.

Published: April 13, 2025

Last updated: January 13, 2026

Learning from Demonstrations via Capability-Aware Goal Sampling

Yuanlin Duan, Yuning Wang, Wenjie Qiu, He Zhu (cs.AI)

Despite its promise, imitation learning often fails in long-horizon environments where perfect replication of demonstrations is unrealistic and small errors can accumulate catastrophically. We introduce Cago (Capability-Aware Goal Sampling), a novel learning-from-demonstrations method that mitigates the brittle dependence on expert trajectories for direct imitation. Unlike prior methods that rely on demonstrations only for policy initialization or reward shaping, Cago dynamically tracks the agent's competence along expert trajectories and uses this signal to select intermediate steps--goals that are just beyond the agent's current reach--to guide learning. This results in an adaptive curriculum that enables steady progress toward solving the full task. Empirical results demonstrate that Cago significantly improves sample efficiency and final performance across a range of sparse-reward, goal-conditioned tasks, consistently outperforming existing learning from-demonstrations baselines.

Published: January 13, 2026

Last updated: January 13, 2026

Generative Adversarial Networks for Image Super-Resolution: A Survey

Ziang Wu, Xuanyu Zhang, Yinbo Yu, Qi Zhu, Jerry Chun-Wei Lin, Chunwei Tian (eess.IV, cs.CV)

Single image super-resolution (SISR) has played an important role in the field of image processing. Recent generative adversarial networks (GANs) can achieve excellent results on low-resolution images. However, there are little literatures summarizing different GANs in SISR. In this paper, we conduct a comparative study of GANs from different perspectives. We begin by surveying the development of GANs and popular GAN variants for image-related applications, and then analyze motivations, implementations and differences of GANs based optimization methods and discriminative learning for image super-resolution in terms of supervised, semi-supervised and unsupervised manners, where these GANs are analyzed via integrating different network architectures, prior knowledge, loss functions and multiple tasks. Secondly, we compare the performances of these popular GANs on public datasets via quantitative and qualitative analysis in SISR. Finally, we highlight challenges of GANs and potential research points for SISR.

Published: April 28, 2022

Last updated: January 13, 2026