1
Reinforced Attention Learning
Post-training with Reinforcement Learning (RL) has substantially improved reasoning in Large Language Models (LLMs) via test-time scaling. However, extending this paradigm to Multimodal LLMs (MLLMs) through verbose rationales yields limited gains for perception and can even degrade performance. We propose Reinforced Attention Learning (RAL), a policy-gradient framework that directly optimizes internal attention distributions rather than output token sequences. By shifting optimization from what to generate to where to attend, RAL promotes effective information allocation and improved grounding in complex multimodal inputs. Experiments across diverse image and video benchmarks show consistent gains over GRPO and other baselines. We further introduce On-Policy Attention Distillation, demonstrating that transferring latent attention behaviors yields stronger cross-modal alignment than standard knowledge distillation. Our results position attention policies as a principled and general alternative for multimodal post-training.
Published: February 04, 2026
Last updated: February 04, 2026
Protein Autoregressive Modeling via Multiscale Structure Generation
We present protein autoregressive modeling (PAR), the first multi-scale autoregressive framework for protein backbone generation via coarse-to-fine next-scale prediction. Using the hierarchical nature of proteins, PAR generates structures that mimic sculpting a statue, forming a coarse topology and refining structural details over scales. To achieve this, PAR consists of three key components: (i) multi-scale downsampling operations that represent protein structures across multiple scales during training; (ii) an autoregressive transformer that encodes multi-scale information and produces conditional embeddings to guide structure generation; (iii) a flow-based backbone decoder that generates backbone atoms conditioned on these embeddings. Moreover, autoregressive models suffer from exposure bias, caused by the training and the generation procedure mismatch, and substantially degrades structure generation quality. We effectively alleviate this issue by adopting noisy context learning and scheduled sampling, enabling robust backbone generation. Notably, PAR exhibits strong zero-shot generalization, supporting flexible human-prompted conditional generation and motif scaffolding without requiring fine-tuning. On the unconditional generation benchmark, PAR effectively learns protein distributions and produces backbones of high design quality, and exhibits favorable scaling behavior. Together, these properties establish PAR as a promising framework for protein structure generation.
Published: February 04, 2026
Last updated: February 04, 2026
Contrastive Continual Learning for Model Adaptability in Internet of Things
Internet of Things (IoT) deployments operate in nonstationary, dynamic environments where factors such as sensor drift, evolving user behavior, and heterogeneous user privacy requirements can affect application utility. Continual learning (CL) addresses this by adapting models over time without catastrophic forgetting. Meanwhile, contrastive learning has emerged as a powerful representation-learning paradigm that improves robustness and sample efficiency in a self-supervised manner. This paper reviews the usage of contrastive continual learning (CCL) for IoT, connecting algorithmic design (replay, regularization, distillation, prompts) with IoT system realities (TinyML constraints, intermittent connectivity, privacy). We present a unifying problem formulation, derive common objectives that blend contrastive and distillation losses, propose an IoT-oriented reference architecture for on-device, edge, and cloud-based CCL, and provide guidance on evaluation protocols and metrics. Finally, we highlight open unique challenges with respect to the IoT domain, such as spanning tabular and streaming IoT data, concept drift, federated settings, and energy-aware training.
Published: February 04, 2026
Last updated: February 04, 2026
MIGHTY: Hermite Spline-based Efficient Trajectory Planning
Hard-constraint trajectory planners often rely on commercial solvers and demand substantial computational resources. Existing soft-constraint methods achieve faster computation, but either (1) decouple spatial and temporal optimization or (2) restrict the search space. To overcome these limitations, we introduce MIGHTY, a Hermite spline-based planner that performs spatiotemporal optimization while fully leveraging the continuous search space of a spline. In simulation, MIGHTY achieves a 9.3% reduction in computation time and a 13.1% reduction in travel time over state-of-the-art baselines, with a 100% success rate. In hardware, MIGHTY completes multiple high-speed flights up to 6.7 m/s in a cluttered static environment and long-duration flights with dynamically added obstacles.
Published: November 13, 2025
Last updated: February 04, 2026
Capturing Visual Environment Structure Correlates with Control Performance
The choice of visual representation is key to scaling generalist robot policies. However, direct evaluation via policy rollouts is expensive, even in simulation. Existing proxy metrics focus on the representation's capacity to capture narrow aspects of the visual world, like object shape, limiting generalization across environments. In this paper, we take an analytical perspective: we probe pretrained visual encoders by measuring how well they support decoding of environment state -- including geometry, object structure, and physical attributes -- from images. Leveraging simulation environments with access to ground-truth state, we show that this probing accuracy strongly correlates with downstream policy performance across diverse environments and learning settings, significantly outperforming prior metrics and enabling efficient representation selection. More broadly, our study provides insight into the representational properties that support generalizable manipulation, suggesting that learning to encode the latent physical state of the environment is a promising objective for control.
Published: February 04, 2026
Last updated: February 04, 2026
Robust inverse material design with physical guarantees using the Voigt-Reuss Net
We propose a spectrally normalized surrogate for forward and inverse mechanical homogenization with hard physical guarantees. Leveraging the Voigt-Reuss bounds, we factor their difference via a Cholesky-like operator and learn a dimensionless, symmetric positive semi-definite representation with eigenvalues in [0,1]; the inverse map returns symmetric positive-definite predictions that lie between the bounds in the Löwner sense. In 3D linear elasticity on an open dataset of stochastic biphasic microstructures, a fully connected Voigt-Reuss net trained on >7.5× 10^5 FFT-based labels with 236 isotropy-invariant descriptors and three contrast parameters recovers the isotropic projection with near-perfect fidelity (isotropy-related entries: R^2 ≥ 0.998), while anisotropy-revealing couplings are unidentifiable from SO(3)-invariant inputs. Tensor-level relative Frobenius errors have median ≈ 1.7% and mean ≈ 3.4% across splits. For 2D plane strain on thresholded trigonometric microstructures, coupling spectral normalization with a differentiable renderer and a CNN yields R^2>0.99 on all components, subpercent normalized losses, accurate tracking of percolation-induced eigenvalue jumps, and robust generalization to out-of-distribution images. Treating the parametric microstructure as design variables, batched first-order optimization with a single surrogate matches target tensors within a few percent and returns diverse near-optimal designs. Overall, the Voigt-Reuss net unifies accurate, physically admissible forward prediction with large-batch, constraint-consistent inverse design, and is generic to elliptic operators and coupled-physics settings.
Published: November 14, 2025
Last updated: February 04, 2026
Rethinking the Trust Region in LLM Reinforcement Learning
Reinforcement learning (RL) has become a cornerstone for fine-tuning Large Language Models (LLMs), with Proximal Policy Optimization (PPO) serving as the de facto standard algorithm. Despite its ubiquity, we argue that the core ratio clipping mechanism in PPO is structurally ill-suited for the large vocabularies inherent to LLMs. PPO constrains policy updates based on the probability ratio of sampled tokens, which serves as a noisy single-sample Monte Carlo estimate of the true policy divergence. This creates a sub-optimal learning dynamic: updates to low-probability tokens are aggressively over-penalized, while potentially catastrophic shifts in high-probability tokens are under-constrained, leading to training inefficiency and instability. To address this, we propose Divergence Proximal Policy Optimization (DPPO), which substitutes heuristic clipping with a more principled constraint based on a direct estimate of policy divergence (e.g., Total Variation or KL). To avoid huge memory footprint, we introduce the efficient Binary and Top-K approximations to capture the essential divergence with negligible overhead. Extensive empirical evaluations demonstrate that DPPO achieves superior training stability and efficiency compared to existing methods, offering a more robust foundation for RL-based LLM fine-tuning.
Published: February 04, 2026
Last updated: February 04, 2026
CoWTracker: Tracking by Warping instead of Correlation
Dense point tracking is a fundamental problem in computer vision, with applications ranging from video analysis to robotic manipulation. State-of-the-art trackers typically rely on cost volumes to match features across frames, but this approach incurs quadratic complexity in spatial resolution, limiting scalability and efficiency. In this paper, we propose \method, a novel dense point tracker that eschews cost volumes in favor of warping. Inspired by recent advances in optical flow, our approach iteratively refines track estimates by warping features from the target frame to the query frame based on the current estimate. Combined with a transformer architecture that performs joint spatiotemporal reasoning across all tracks, our design establishes long-range correspondences without computing feature correlations. Our model is simple and achieves state-of-the-art performance on standard dense point tracking benchmarks, including TAP-Vid-DAVIS, TAP-Vid-Kinetics, and Robo-TAP. Remarkably, the model also excels at optical flow, sometimes outperforming specialized methods on the Sintel, KITTI, and Spring benchmarks. These results suggest that warping-based architectures can unify dense point tracking and optical flow estimation.
Published: February 04, 2026
Last updated: February 04, 2026
PerpetualWonder: Long-Horizon Action-Conditioned 4D Scene Generation
We introduce PerpetualWonder, a hybrid generative simulator that enables long-horizon, action-conditioned 4D scene generation from a single image. Current works fail at this task because their physical state is decoupled from their visual representation, which prevents generative refinements to update the underlying physics for subsequent interactions. PerpetualWonder solves this by introducing the first true closed-loop system. It features a novel unified representation that creates a bidirectional link between the physical state and visual primitives, allowing generative refinements to correct both the dynamics and appearance. It also introduces a robust update mechanism that gathers supervision from multiple viewpoints to resolve optimization ambiguity. Experiments demonstrate that from a single image, PerpetualWonder can successfully simulate complex, multi-step interactions from long-horizon actions, maintaining physical plausibility and visual consistency.
Published: February 04, 2026
Last updated: February 04, 2026
Laminating Representation Autoencoders for Efficient Diffusion
Recent work has shown that diffusion models can generate high-quality images by operating directly on SSL patch features rather than pixel-space latents. However, the dense patch grids from encoders like DINOv2 contain significant redundancy, making diffusion needlessly expensive. We introduce FlatDINO, a variational autoencoder that compresses this representation into a one-dimensional sequence of just 32 continuous tokens -an 8x reduction in sequence length and 48x compression in total dimensionality. On ImageNet 256x256, a DiT-XL trained on FlatDINO latents achieves a gFID of 1.80 with classifier-free guidance while requiring 8x fewer FLOPs per forward pass and up to 4.5x fewer FLOPs per training step compared to diffusion on uncompressed DINOv2 features. These are preliminary results and this work is in progress.
Published: February 04, 2026
Last updated: February 04, 2026
Multi-layer Cross-Attention is Provably Optimal for Multi-modal In-context Learning
Recent progress has rapidly advanced our understanding of the mechanisms underlying in-context learning in modern attention-based neural networks. However, existing results focus exclusively on unimodal data; in contrast, the theoretical underpinnings of in-context learning for multi-modal data remain poorly understood. We introduce a mathematically tractable framework for studying multi-modal learning and explore when transformer-like architectures can recover Bayes-optimal performance in-context. To model multi-modal problems, we assume the observed data arises from a latent factor model. Our first result comprises a negative take on expressibility: we prove that single-layer, linear self-attention fails to recover the Bayes-optimal predictor uniformly over the task distribution. To address this limitation, we introduce a novel, linearized cross-attention mechanism, which we study in the regime where both the number of cross-attention layers and the context length are large. We show that this cross-attention mechanism is provably Bayes optimal when optimized using gradient flow. Our results underscore the benefits of depth for in-context learning and establish the provable utility of cross-attention for multi-modal distributions.
Published: February 04, 2026
Last updated: February 04, 2026
Multi-Head LatentMoE and Head Parallel: Communication-Efficient and Deterministic MoE Parallelism
Large language models have transformed many applications but remain expensive to train. Sparse Mixture of Experts (MoE) addresses this through conditional computation, with Expert Parallel (EP) as the standard distributed training method. However, EP has three limitations: communication cost grows linearly with the number of activated experts k, load imbalance affects latency and memory usage, and data-dependent communication requires metadata exchange. We propose Multi-Head LatentMoE and Head Parallel (HP), a new architecture and parallelism achieving O(1) communication cost regardless of k, completely balanced traffic, and deterministic communication, all while remaining compatible with EP. To accelerate Multi-Head LatentMoE, we propose IO-aware routing and expert computation. Compared to MoE with EP, Multi-Head LatentMoE with HP trains up to 1.61× faster while having identical performance. With doubled granularity, it achieves higher overall performance while still being 1.11× faster. Our method makes multi-billion-parameter foundation model research more accessible.
Published: February 04, 2026
Last updated: February 04, 2026
CRoSS: A Continual Robotic Simulation Suite for Scalable Reinforcement Learning with High Task Diversity and Realistic Physics Simulation
Continual reinforcement learning (CRL) requires agents to learn from a sequence of tasks without forgetting previously acquired policies. In this work, we introduce a novel benchmark suite for CRL based on realistically simulated robots in the Gazebo simulator. Our Continual Robotic Simulation Suite (CRoSS) benchmarks rely on two robotic platforms: a two-wheeled differential-drive robot with lidar, camera and bumper sensor, and a robotic arm with seven joints. The former represent an agent in line-following and object-pushing scenarios, where variation of visual and structural parameters yields a large number of distinct tasks, whereas the latter is used in two goal-reaching scenarios with high-level cartesian hand position control (modeled after the Continual World benchmark), and low-level control based on joint angles. For the robotic arm benchmarks, we provide additional kinematics-only variants that bypass the need for physical simulation (as long as no sensor readings are required), and which can be run two orders of magnitude faster. CRoSS is designed to be easily extensible and enables controlled studies of continual reinforcement learning in robotic settings with high physical realism, and in particular allow the use of almost arbitrary simulated sensors. To ensure reproducibility and ease of use, we provide a containerized setup (Apptainer) that runs out-of-the-box, and report performances of standard RL algorithms, including Deep Q-Networks (DQN) and policy gradient methods. This highlights the suitability as a scalable and reproducible benchmark for CRL research.
Published: February 04, 2026
Last updated: February 04, 2026
When LLaVA Meets Objects: Token Composition for Vision-Language-Models
Current autoregressive Vision Language Models (VLMs) usually rely on a large number of visual tokens to represent images, resulting in a need for more compute especially at inference time. To address this problem, we propose Mask-LLaVA, a framework that leverages different levels of visual features to create a compact yet information-rich visual representation for autoregressive VLMs. Namely, we combine mask-based object representations together with global tokens and local patch tokens. While all tokens are used during training, it shows that the resulting model can flexibly drop especially the number of mask-based object-tokens at test time, allowing to adapt the number of tokens during inference without the need to retrain the model and without a significant drop in performance. We evaluate the proposed approach on a suite of standard benchmarks showing results competitive to current token efficient methods and comparable to the original LLaVA baseline using only a fraction of visual tokens. Our analysis demonstrates that combining multi-level features enables efficient learning with fewer tokens while allowing dynamic token selection at test time for good performance.
Published: February 04, 2026
Last updated: February 04, 2026
Subliminal Effects in Your Data: A General Mechanism via Log-Linearity
Training modern large language models (LLMs) has become a veritable smorgasbord of algorithms and datasets designed to elicit particular behaviors, making it critical to develop techniques to understand the effects of datasets on the model's properties. This is exacerbated by recent experiments that show datasets can transmit signals that are not directly observable from individual datapoints, posing a conceptual challenge for dataset-centric understandings of LLM training and suggesting a missing fundamental account of such phenomena. Towards understanding such effects, inspired by recent work on the linear structure of LLMs, we uncover a general mechanism through which hidden subtexts can arise in generic datasets. We introduce Logit-Linear-Selection (LLS), a method that prescribes how to select subsets of a generic preference dataset to elicit a wide range of hidden effects. We apply LLS to discover subsets of real-world datasets so that models trained on them exhibit behaviors ranging from having specific preferences, to responding to prompts in a different language not present in the dataset, to taking on a different persona. Crucially, the effect persists for the selected subset, across models with varying architectures, supporting its generality and universality.
Published: February 04, 2026
Last updated: February 04, 2026
From Evaluation to Design: Using Potential Energy Surface Smoothness Metrics to Guide Machine Learning Interatomic Potential Architectures
Machine Learning Interatomic Potentials (MLIPs) sometimes fail to reproduce the physical smoothness of the quantum potential energy surface (PES), leading to erroneous behavior in downstream simulations that standard energy and force regression evaluations can miss. Existing evaluations, such as microcanonical molecular dynamics (MD), are computationally expensive and primarily probe near-equilibrium states. To improve evaluation metrics for MLIPs, we introduce the Bond Smoothness Characterization Test (BSCT). This efficient benchmark probes the PES via controlled bond deformations and detects non-smoothness, including discontinuities, artificial minima, and spurious forces, both near and far from equilibrium. We show that BSCT correlates strongly with MD stability while requiring a fraction of the cost of MD. To demonstrate how BSCT can guide iterative model design, we utilize an unconstrained Transformer backbone as a testbed, illustrating how refinements such as a new differentiable k-nearest neighbors algorithm and temperature-controlled attention reduce artifacts identified by our metric. By optimizing model design systematically based on BSCT, the resulting MLIP simultaneously achieves a low conventional E/F regression error, stable MD simulations, and robust atomistic property predictions. Our results establish BSCT as both a validation metric and as an "in-the-loop" model design proxy that alerts MLIP developers to physical challenges that cannot be efficiently evaluated by current MLIP benchmarks.
Published: February 04, 2026
Last updated: February 04, 2026
Combining Residual U-Net and Data Augmentation for Dense Temporal Segmentation of Spike Wave Discharges in Single-Channel EEG
Manual annotation of spike-wave discharges (SWDs), the electrographic hallmark of absence seizures, is labor-intensive for long-term electroencephalography (EEG) monitoring studies. While machine learning approaches show promise for automated detection, they often struggle with cross-subject generalization due to high inter-individual variability in seizure morphology and signal characteristics. In this study we compare the performance of 15 machine learning classifiers on our own manually annotated dataset of 961 hours of EEG recordings from C3H/HeJ mice, including 22,637 labeled SWDs and find that a 1D U-Net performs the best. We then improve its performance by employing residual connections and data augmentation strategies combining amplitude scaling, Gaussian noise injection, and signal inversion during training to enhance cross-subject generalization. We also compare our method, named AugUNet1D, to a recently published time- and frequency-based algorithmic approach called "Twin Peaks" and show that AugUNet1D performs better on our dataset. AugUNet1D, pretrained on our manually annotated data or untrained, is made public for other users.
Published: January 01, 2026
Last updated: February 04, 2026
CoT is Not the Chain of Truth: An Empirical Internal Analysis of Reasoning LLMs for Fake News Generation
From generating headlines to fabricating news, the Large Language Models (LLMs) are typically assessed by their final outputs, under the safety assumption that a refusal response signifies safe reasoning throughout the entire process. Challenging this assumption, our study reveals that during fake news generation, even when a model rejects a harmful request, its Chain-of-Thought (CoT) reasoning may still internally contain and propagate unsafe narratives. To analyze this phenomenon, we introduce a unified safety-analysis framework that systematically deconstructs CoT generation across model layers and evaluates the role of individual attention heads through Jacobian-based spectral metrics. Within this framework, we introduce three interpretable measures: stability, geometry, and energy to quantify how specific attention heads respond or embed deceptive reasoning patterns. Extensive experiments on multiple reasoning-oriented LLMs show that the generation risk rise significantly when the thinking mode is activated, where the critical routing decisions concentrated in only a few contiguous mid-depth layers. By precisely identifying the attention heads responsible for this divergence, our work challenges the assumption that refusal implies safety and provides a new understanding perspective for mitigating latent reasoning risks.
Published: February 04, 2026
Last updated: February 04, 2026
Comparing statistical and deep learning techniques for parameter estimation of continuous-time stochastic differentiable equations
Stochastic differential equations such as the Ornstein-Uhlenbeck process have long been used to model realworld probablistic events such as stock prices and temperature fluctuations. While statistical methods such as Maximum Likelihood Estimation (MLE), Kalman Filtering, Inverse Variable Method, and more have historically been used to estimate the parameters of stochastic differential equations, the recent explosion of deep learning technology suggests that models such as a Recurrent Neural Network (RNN) could produce more precise estimators. We present a series of experiments that compare the estimation accuracy and computational expensiveness of a statistical method (MLE) with a deep learning model (RNN) for the parameters of the Ornstein-Uhlenbeck process.
Published: May 06, 2025
Last updated: February 04, 2026
Beyond Fixed Frames: Dynamic Character-Aligned Speech Tokenization
Neural audio codecs are at the core of modern conversational speech technologies, converting continuous speech into sequences of discrete tokens that can be processed by LLMs. However, existing codecs typically operate at fixed frame rates, allocating tokens uniformly in time and producing unnecessarily long sequences. In this work, we introduce DyCAST, a Dynamic Character-Aligned Speech Tokenizer that enables variable-frame-rate tokenization through soft character-level alignment and explicit duration modeling. DyCAST learns to associate tokens with character-level linguistic units during training and supports alignment-free inference with direct control over token durations at decoding time. To improve speech resynthesis quality at low frame rates, we further introduce a retrieval-augmented decoding mechanism that enhances reconstruction fidelity without increasing bitrate. Experiments show that DyCAST achieves competitive speech resynthesis quality and downstream performance while using significantly fewer tokens than fixed-frame-rate codecs. Code and checkpoints will be released publicly at https://github.com/lucadellalib/dycast.
Published: January 30, 2026
Last updated: February 04, 2026
Decomposed Prompting Does Not Fix Knowledge Gaps, But Helps Models Say "I Don't Know"
Large language models often struggle to recognize their knowledge limits in closed-book question answering, leading to confident hallucinations. While decomposed prompting is typically used to improve accuracy, we investigate its impact on reliability. We evaluate three task-equivalent prompting regimes: Direct, Assistive, and Incremental, across different model scales and multi-hop QA benchmarks. We find that although accuracy gains from decomposition diminish in frontier models, disagreements between prompting regimes remain highly indicative of potential errors. Because factual knowledge is stable while hallucinations are stochastic, cross-regime agreement provides a precise signal of internal uncertainty. We leverage this signal to implement a training-free abstention policy that requires no retrieval or fine-tuning. Our results show that disagreement-based abstention outperforms standard uncertainty baselines as an error detector, improving both F1 and AUROC across settings. This demonstrates that decomposition-based prompting can serve as a practical diagnostic probe for model reliability in closed-book QA.
Published: February 04, 2026
Last updated: February 04, 2026
The Key to State Reduction in Linear Attention: A Rank-based Perspective
Linear attention offers a computationally efficient yet expressive alternative to softmax attention. However, recent empirical results indicate that the state of trained linear attention models often exhibits a low-rank structure, suggesting that these models underexploit their capacity in practice. To illuminate this phenomenon, we provide a theoretical analysis of the role of rank in linear attention, revealing that low effective rank can affect retrieval error by amplifying query noise. In addition to these theoretical insights, we conjecture that the low-rank states can be substantially reduced post-training with only minimal performance degradation, yielding faster and more memory-efficient models. To this end, we propose a novel hardware-aware approach that structurally prunes key and query matrices, reducing the state size while retaining compatibility with existing CUDA kernels. We adapt several existing pruning strategies to fit our framework and, building on our theoretical analysis, propose a novel structured pruning method based on a rank-revealing QR decomposition. Our empirical results, evaluated across models of varying sizes and on various downstream tasks, demonstrate the effectiveness of our state reduction framework. We highlight that our framework enables the removal of 50% of the query and key channels at only a marginal increase in perplexity. The code for this project can be found at https://github.com/camail-official/LinearAttentionPruning.
Published: February 04, 2026
Last updated: February 04, 2026
PDF-HR: Pose Distance Fields for Humanoid Robots
Pose and motion priors play a crucial role in humanoid robotics. Although such priors have been widely studied in human motion recovery (HMR) domain with a range of models, their adoption for humanoid robots remains limited, largely due to the scarcity of high-quality humanoid motion data. In this work, we introduce Pose Distance Fields for Humanoid Robots (PDF-HR), a lightweight prior that represents the robot pose distribution as a continuous and differentiable manifold. Given an arbitrary pose, PDF-HR predicts its distance to a large corpus of retargeted robot poses, yielding a smooth measure of pose plausibility that is well suited for optimization and control. PDF-HR can be integrated as a reward shaping term, a regularizer, or a standalone plausibility scorer across diverse pipelines. We evaluate PDF-HR on various humanoid tasks, including single-trajectory motion tracking, general motion tracking, style-based motion mimicry, and general motion retargeting. Experiments show that this plug-and-play prior consistently and substantially strengthens strong baselines. Code and models will be released.
Published: February 04, 2026
Last updated: February 04, 2026
El Agente Quntur: A research collaborator agent for quantum chemistry
Quantum chemistry is a foundational enabling tool for the fields of chemistry, materials science, computational biology and others. Despite of its power, the practical application of quantum chemistry simulations remains in the hands of qualified experts due to methodological complexity, software heterogeneity, and the need for informed interpretation of results. To bridge the accessibility gap for these tools and expand their reach to chemists with broader backgrounds, we introduce El Agente Quntur, a hierarchical, multi-agent AI system designed to operate not merely as an automation tool but as a research collaborator for computational quantum chemistry. Quntur was designed following three main strategies: i) elimination of hard-coded procedural policies in favour of reasoning-driven decisions, ii) construction of general and composable actions that facilitate generalization and efficiency, and iii) implementation of guided deep research to integrate abstract quantum-chemical reasoning across subdisciplines and a detailed understanding of the software's internal logic and syntax. Although instantiated in ORCA, these design principles are applicable to research agents more generally and easily expandable to additional quantum chemistry packages and beyond. Quntur supports the full range of calculations available in ORCA 6.0 and reasons over software documentation and scientific literature to plan, execute, adapt, and analyze in silico chemistry experiments following best practices. We discuss the advances and current bottlenecks in agentic systems operating at the research level in computational chemistry, and outline a roadmap toward a fully autonomous end-to-end computational chemistry research agent.
Published: February 04, 2026
Last updated: February 04, 2026
El Agente Estructural: An Artificially Intelligent Molecular Editor
We present El Agente Estructural, a multimodal, natural-language-driven geometry-generation and manipulation agent for autonomous chemistry and molecular modelling. Unlike molecular generation or editing via generative models, Estructural mimics how human experts directly manipulate molecular systems in three dimensions by integrating a comprehensive set of domain-informed tools and vision-language models. This design enables precise control over atomic or functional group replacements, atomic connectivity, and stereochemistry without the need to rebuild extensive core molecular frameworks. Through a series of representative case studies, we demonstrate that Estructural enables chemically meaningful geometry manipulation across a wide range of real-world scenarios. These include site-selective functionalization, ligand binding, ligand exchange, stereochemically controlled structure construction, isomer interconversion, fragment-level structural analysis, image-guided generation of structures from schematic reaction mechanisms, and mechanism-driven geometry generation and modification. These examples illustrate how multimodal reasoning, when combined with specialized geometry-aware tools, supports interactive and context-aware molecular modelling beyond structure generation. Looking forward, the integration of Estructural into El Agente Quntur, an autonomous multi-agent quantum chemistry platform, enhances its capabilities by adding sophisticated tools for the generation and editing of three-dimensional structures.
Published: February 04, 2026
Last updated: February 04, 2026
Fluid Representations in Reasoning Models
Reasoning language models, which generate long chains of thought, dramatically outperform non-reasoning language models on abstract problems. However, the internal model mechanisms that allow this superior performance remain poorly understood. We present a mechanistic analysis of how QwQ-32B - a model specifically trained to produce extensive reasoning traces - process abstract structural information. On Mystery Blocksworld - a semantically obfuscated planning domain - we find that QwQ-32B gradually improves its internal representation of actions and concepts during reasoning. The model develops abstract encodings that focus on structure rather than specific action names. Through steering experiments, we establish causal evidence that these adaptations improve problem solving: injecting refined representations from successful traces boosts accuracy, while symbolic representations can replace many obfuscated encodings with minimal performance loss. We find that one of the factors driving reasoning model performance is in-context refinement of token representations, which we dub Fluid Reasoning Representations.
Published: February 04, 2026
Last updated: February 04, 2026
The matrix-vector complexity of Ax=b
Matrix-vector algorithms, particularly Krylov subspace methods, are widely viewed as the most effective algorithms for solving large systems of linear equations. This paper establishes lower bounds on the worst-case number of matrix-vector products needed by such an algorithm to approximately solve a general linear system. The first main result is that, for a matrix-vector algorithm which can perform products with both a matrix and its transpose, Ω(κlog(1/ε)) matrix-vector products are necessary to solve a linear system with condition number κ to accuracy ε, matching an upper bound for conjugate gradient on the normal equations. The second main result is that one-sided algorithms, which lack access to the transpose, must use n matrix-vector products to solve an n × n linear system, even when the problem is perfectly conditioned. Both main results include explicit constants that match known upper bounds up to a factor of four. These results rigorously demonstrate the limitations of matrix-vector algorithms and confirm the optimality of widely used Krylov subspace algorithms.
Published: February 04, 2026
Last updated: February 04, 2026
LitS: A novel Neighborhood Descriptor for Point Clouds
With the advancement of 3D scanning technologies, point clouds have become fundamental for representing 3D spatial data, with applications that span across various scientific and technological fields. Practical analysis of this data depends crucially on available neighborhood descriptors to accurately characterize the local geometries of the point cloud. This paper introduces LitS, a novel neighborhood descriptor for 2D and 3D point clouds. LitS are piecewise constant functions on the unit circle that allow points to keep track of their surroundings. Each element in LitS' domain represents a direction with respect to a local reference system. Once constructed, evaluating LitS at any given direction gives us information about the number of neighbors in a cone-like region centered around that same direction. Thus, LitS conveys a lot of information about the local neighborhood of a point, which can be leveraged to gain global structural understanding by analyzing how LitS changes between close points. In addition, LitS comes in two versions ('regular' and 'cumulative') and has two parameters, allowing them to adapt to various contexts and types of point clouds. Overall, they are a versatile neighborhood descriptor, capable of capturing the nuances of local point arrangements and resilient to common point cloud data issues such as variable density and noise.
Published: February 04, 2026
Last updated: February 04, 2026
Personalized Image Generation via Human-in-the-loop Bayesian Optimization
Imagine Alice has a specific image x^∗ in her mind, say, the view of the street in which she grew up during her childhood. To generate that exact image, she guides a generative model with multiple rounds of prompting and arrives at an image x^p*. Although x^p* is reasonably close to x^∗, Alice finds it difficult to close that gap using language prompts. This paper aims to narrow this gap by observing that even after language has reached its limits, humans can still tell when a new image x^+ is closer to x^∗ than x^p*. Leveraging this observation, we develop MultiBO (Multi-Choice Preferential Bayesian Optimization) that carefully generates K new images as a function of x^p*, gets preferential feedback from the user, uses the feedback to guide the diffusion model, and ultimately generates a new set of K images. We show that within B rounds of user feedback, it is possible to arrive much closer to x^∗, even though the generative model has no information about x^∗. Qualitative scores from 30 users, combined with quantitative metrics compared across 5 baselines, show promising results, suggesting that multi-choice feedback from humans can be effectively harnessed for personalized image generation.
Published: February 02, 2026
Last updated: February 04, 2026
OverThink: Slowdown Attacks on Reasoning LLMs
Most flagship language models generate explicit reasoning chains, enabling inference-time scaling. However, producing these reasoning chains increases token usage (i.e., reasoning tokens), which in turn increases latency and costs. Our OverThink attack increases overhead for applications that rely on reasoning language models (RLMs) and external context by forcing them to spend substantially more reasoning tokens while still producing contextually correct answers. An adversary mounts an attack by injecting decoy reasoning problems into public content that is consumed by RLM at inference time. Because our decoys (e.g., Markov decision processes, Sudokus, etc.) are benign, they evade safety filters. We evaluate OverThink on both closed-source and open-source reasoning models across the FreshQA, SQuAD, and MuSR datasets. We also explore the attack in multi-modal settings by creating images that cause excessive reasoning. We show that the resulting slowdown transfers across models. Finally, we explore both LLM-based and systems-level defenses, and discuss the societal, financial, and energy implications of the OverThink attacks.
Published: February 04, 2025
Last updated: February 04, 2026
Group-Evolving Agents: Open-Ended Self-Improvement via Experience Sharing
Open-ended self-improving agents can autonomously modify their own structural designs to advance their capabilities and overcome the limits of pre-defined architectures, thus reducing reliance on human intervention. We introduce Group-Evolving Agents (GEA), a new paradigm for open-ended self-improvements, which treats a group of agents as the fundamental evolutionary unit, enabling explicit experience sharing and reuse within the group throughout evolution. Unlike existing open-ended self-evolving paradigms that adopt tree-structured evolution, GEA overcomes the limitation of inefficient utilization of exploratory diversity caused by isolated evolutionary branches. We evaluate GEA on challenging coding benchmarks, where it significantly outperforms state-of-the-art self-evolving methods (71.0% vs. 56.7% on SWE-bench Verified, 88.3% vs. 68.3% on Polyglot) and matches or exceeds top human-designed agent frameworks (71.8% and 52.0% on two benchmarks, respectively). Analysis reveals that GEA more effectively converts early-stage exploratory diversity into sustained, long-term progress, achieving stronger performance under the same number of evolved agents. Furthermore, GEA exhibits consistent transferability across different coding models and greater robustness, fixing framework-level bugs in 1.4 iterations on average, versus 5 for self-evolving methods.
Published: February 04, 2026
Last updated: February 04, 2026
Grammatical Error Correction for Low-Resource Languages: The Case of Zarma
Grammatical error correction (GEC) aims to improve text quality and readability. Previous work on the task focused primarily on high-resource languages, while low-resource languages lack robust tools. To address this shortcoming, we present a study on GEC for Zarma, a language spoken by over five million people in West Africa. We compare three approaches: rule-based methods, machine translation (MT) models, and large language models (LLMs). We evaluated GEC models using a dataset of more than 250,000 examples, including synthetic and human-annotated data. Our results showed that the MT-based approach using M2M100 outperforms others, with a detection rate of 95.82% and a suggestion accuracy of 78.90% in automatic evaluations (AE) and an average score of 3.0 out of 5.0 in manual evaluation (ME) from native speakers for grammar and logical corrections. The rule-based method was effective for spelling errors but failed on complex context-level errors. LLMs -- Gemma 2b and MT5-small -- showed moderate performance. Our work supports use of MT models to enhance GEC in low-resource settings, and we validated these results with Bambara, another West African language.
Published: October 20, 2024
Last updated: February 04, 2026
Group-Adaptive Adversarial Learning for Robust Fake News Detection Against Malicious Comments
Online fake news profoundly distorts public judgment and erodes trust in social platforms. While existing detectors achieve competitive performance on benchmark datasets, they remain notably vulnerable to malicious comments designed specifically to induce misclassification. This evolving threat landscape necessitates detection systems that simultaneously prioritize predictive accuracy and structural robustness. However, current detectors often fail to generalize across diverse and novel comment attack patterns. To bridge this gap, we propose AdComment, an adaptive adversarial training framework for robustness enhancement against diverse malicious comments. Based on cognitive psychology, we categorize adversarial comments into Fact Distortion, Logical Confusion, and Emotional Manipulation, and leverage LLMs to synthesize diverse, category-specific perturbations. Central to our framework is an InfoDirichlet Resampling (IDR) mechanism that dynamically adjusts malicious comment proportions during training, thereby steering optimization toward the model's most susceptible regions. Experimental results demonstrate that our approach achieves state-of-the-art performance on three benchmark datasets, improving the F1 scores by 17.9%, 14.5% and 9.0%, respectively.
Published: October 10, 2025
Last updated: February 04, 2026
Are AI Capabilities Increasing Exponentially? A Competing Hypothesis
Rapidly increasing AI capabilities have substantial real-world consequences, ranging from AI safety concerns to labor market consequences. The Model Evaluation & Threat Research (METR) report argues that AI capabilities have exhibited exponential growth since 2019. In this note, we argue that the data does not support exponential growth, even in shorter-term horizons. Whereas the METR study claims that fitting sigmoid/logistic curves results in inflection points far in the future, we fit a sigmoid curve to their current data and find that the inflection point has already passed. In addition, we propose a more complex model that decomposes AI capabilities into base and reasoning capabilities, exhibiting individual rates of improvement. We prove that this model supports our hypothesis that AI capabilities will exhibit an inflection point in the near future. Our goal is not to establish a rigorous forecast of our own, but to highlight the fragility of existing forecasts of exponential growth.
Published: February 04, 2026
Last updated: February 04, 2026
It's not a Lottery, it's a Race: Understanding How Gradient Descent Adapts the Network's Capacity to the Task
Our theoretical understanding of neural networks is lagging behind their empirical success. One of the important unexplained phenomena is why and how, during the process of training with gradient descent, the theoretical capacity of neural networks is reduced to an effective capacity that fits the task. We here investigate the mechanism by which gradient descent achieves this through analyzing the learning dynamics at the level of individual neurons in single hidden layer ReLU networks. We identify three dynamical principles -- mutual alignment, unlocking and racing -- that together explain why we can often successfully reduce capacity after training through the merging of equivalent neurons or the pruning of low norm weights. We specifically explain the mechanism behind the lottery ticket conjecture, or why the specific, beneficial initial conditions of some neurons lead them to obtain higher weight norms.
Published: February 04, 2026
Last updated: February 04, 2026
Guardrailed Uplift Targeting: A Causal Optimization Playbook for Marketing Strategy
This paper introduces a marketing decision framework that optimizes customer targeting by integrating heterogeneous treatment effect estimation with explicit business guardrails. The objective is to maximize revenue and retention while adhering to constraints such as budget, revenue protection, and customer experience. The framework first estimates Conditional Average Treatment Effects (CATE) using uplift learners, then solves a constrained allocation problem to decide whom to target and which offer to deploy. It supports decisions in retention messaging, event rewards, and spend-threshold assignment. Validated through offline simulations and online A/B tests, the approach consistently outperforms propensity and static baselines, offering a reusable playbook for causal targeting at scale.
Published: December 22, 2025
Last updated: February 04, 2026
Domain Generalization Under Posterior Drift
Domain generalization (DG) is the problem of generalizing from several distributions (or domains), for which labeled training data are available, to a new test domain for which no labeled data is available. For the prevailing benchmark datasets in DG, there exists a single classifier that performs well across all domains. In this work, we study a fundamentally different regime where the domains satisfy a posterior drift assumption, in which the optimal classifier might vary substantially with domain. We establish a decision-theoretic framework for DG under posterior drift, and investigate the practical implications of this framework through experiments on language and vision tasks.
Published: October 06, 2025
Last updated: February 04, 2026
Attention Consistency Regularization for Interpretable Early-Exit Neural Networks
Early-exit neural networks enable adaptive inference by allowing predictions at intermediate layers, reducing computational cost. However, early exits often lack interpretability and may focus on different features than deeper layers, limiting trust and explainability. This paper presents Explanation-Guided Training (EGT), a multi-objective framework that improves interpretability and consistency in early-exit networks through attention-based regularization. EGT introduces an attention consistency loss that aligns early-exit attention maps with the final exit. The framework jointly optimizes classification accuracy and attention consistency through a weighted combination of losses. Experiments on a real-world image classification dataset demonstrate that EGT achieves up to 98.97% overall accuracy (matching baseline performance) with a 1.97x inference speedup through early exits, while improving attention consistency by up to 18.5% compared to baseline models. The proposed method provides more interpretable and consistent explanations across all exit points, making early-exit networks more suitable for explainable AI applications in resource-constrained environments.
Published: January 13, 2026
Last updated: February 04, 2026
TRACE: Transparent Web Reliability Assessment with Contextual Explanations
In an era of AI-generated misinformation flooding the web, existing tools struggle to empower users with nuanced, transparent assessments of content credibility. They often default to binary (true/false) classifications without contextual justifications, leaving users vulnerable to disinformation. We address this gap by introducing TRACE: Transparent Reliability Assessment with Contextual Explanations, a unified framework that performs two key tasks: (1) it assigns a fine-grained, continuous reliability score (from 0.1 to 1.0) to web content, and (2) it generates a contextual explanation for its assessment. The core of TRACE is the TrueGL-1B model, fine-tuned on a novel, large-scale dataset of over 140,000 articles. This dataset's primary contribution is its annotation with 35 distinct continuous reliability scores, created using a Human-LLM co-creation and data poisoning paradigm. This method overcomes the limitations of binary-labeled datasets by populating the mid-ranges of reliability. In our evaluation, TrueGL-1B consistently outperforms other small-scale LLM baselines and rule-based approaches on key regression metrics, including MAE, RMSE, and R2. The model's high accuracy and interpretable justifications make trustworthy information more accessible. To foster future research, our code and model are made publicly available here: github.com/zade90/TrueGL.
Published: June 05, 2025
Last updated: February 04, 2026
Approximate minimization of interpretations in fuzzy description logics under the Gödel semantics
The problem of minimizing fuzzy interpretations in fuzzy description logics (FDLs) is important both theoretically and practically. For instance, fuzzy or weighted social networks can be modeled as fuzzy interpretations, where individuals represent actors and roles capture interactions. Minimizing such interpretations yields more compact representations, which can significantly improve the efficiency of reasoning and analysis tasks in knowledge-based systems. We present the first algorithm that minimizes a finite fuzzy interpretation while preserving fuzzy concept assertions in FDLs without the Baaz projection operator and the universal role, under the Gödel semantics. The considered class of FDLs ranges from the sublogic of f𝒜ℒ𝒞 without the union operator and universal restriction to the FDL that extends f𝒜ℒ𝒞_reg with inverse roles and nominals. Our algorithm is given in an extended form that supports approximate preservation: it minimizes a finite fuzzy interpretation ℐ while preserving fuzzy concept assertions up to a degree γ∈ (0,1]. Its time complexity is O((mlogl + n)logn), where n is the size of the domain of ℐ, m is the number of nonzero instances of atomic roles in ℐ, and l is the number of distinct fuzzy values used in such instances plus 2. Methodologically, our approach fundamentally differs from existing ones, as it avoids quotient constructions traditionally employed for minimizing fuzzy interpretations and fuzzy automata.
Published: October 24, 2025
Last updated: February 04, 2026
Safe Urban Traffic Control via Uncertainty-Aware Conformal Prediction and World-Model Reinforcement Learning
Urban traffic management demands systems that simultaneously predict future conditions, detect anomalies, and take safe corrective actions -- all while providing reliability guarantees. We present STREAM-RL, a unified framework that introduces three novel algorithmic contributions: (1) PU-GAT+, an Uncertainty-Guided Adaptive Conformal Forecaster that uses prediction uncertainty to dynamically reweight graph attention via confidence-monotonic attention, achieving distribution-free coverage guarantees; (2) CRFN-BY, a Conformal Residual Flow Network that models uncertainty-normalized residuals via normalizing flows with Benjamini-Yekutieli FDR control under arbitrary dependence; and (3) LyCon-WRL+, an Uncertainty-Guided Safe World-Model RL agent with Lyapunov stability certificates, certified Lipschitz bounds, and uncertainty-propagated imagination rollouts. To our knowledge, this is the first framework to propagate calibrated uncertainty from forecasting through anomaly detection to safe policy learning with end-to-end theoretical guarantees. Experiments on multiple real-world traffic trajectory data demonstrate that STREAM-RL achieves 91.4\% coverage efficiency, controls FDR at 4.1\% under verified dependence, and improves safety rate to 95.2\% compared to 69\% for standard PPO while achieving higher reward, with 23ms end-to-end inference latency.
Published: February 04, 2026
Last updated: February 04, 2026
Toward Reliable and Explainable Nail Disease Classification: Leveraging Adversarial Training and Grad-CAM Visualization
Human nail diseases are gradually observed over all age groups, especially among older individuals, often going ignored until they become severe. Early detection and accurate diagnosis of such conditions are important because they sometimes reveal our body's health problems. But it is challenging due to the inferred visual differences between disease types. This paper presents a machine learning-based model for automated classification of nail diseases based on a publicly available dataset, which contains 3,835 images scaling six categories. In 224x224 pixels, all images were resized to ensure consistency. To evaluate performance, four well-known CNN models-InceptionV3, DenseNet201, EfficientNetV2, and ResNet50 were trained and analyzed. Among these, InceptionV3 outperformed the others with an accuracy of 95.57%, while DenseNet201 came next with 94.79%. To make the model stronger and less likely to make mistakes on tricky or noisy images, we used adversarial training. To help understand how the model makes decisions, we used SHAP to highlight important features in the predictions. This system could be a helpful support for doctors, making nail disease diagnosis more accurate and faster.
Published: February 04, 2026
Last updated: February 04, 2026
XtraLight-MedMamba for Classification of Neoplastic Tubular Adenomas
Accurate risk stratification of precancerous polyps during routine colonoscopy screenings is essential for lowering the risk of developing colorectal cancer (CRC). However, assessment of low-grade dysplasia remains limited by subjective histopathologic interpretation. Advancements in digital pathology and deep learning provide new opportunities to identify subtle and fine morphologic patterns associated with malignant progression that may be imperceptible to the human eye. In this work, we propose XtraLight-MedMamba, an ultra-lightweight state-space-based deep learning framework for classifying neoplastic tubular adenomas from whole-slide images (WSIs). The architecture is a blend of ConvNext based shallow feature extractor with parallel vision mamba to efficiently model both long- and short-range dependencies and image generalization. An integration of Spatial and Channel Attention Bridge (SCAB) module enhances multiscale feature extraction, while Fixed Non-Negative Orthogonal Classifier (FNOClassifier) enables substantial parameter reduction and improved generalization. The model was evaluated on a curated dataset acquired from patients with low-grade tubular adenomas, stratified into case and control cohorts based on subsequent CRC development. XtraLight-MedMamba achieved an accuracy of 97.18% and an F1-score of 0.9767 using approximately 32,000 parameters, outperforming transformer-based and conventional Mamba architectures with significantly higher model complexity.
Published: February 04, 2026
Last updated: February 04, 2026
A Generalization Bound for a Family of Implicit Networks
Implicit networks are a class of neural networks whose outputs are defined by the fixed point of a parameterized operator. They have enjoyed success in many applications including natural language processing, image processing, and numerous other applications. While they have found abundant empirical success, theoretical work on its generalization is still under-explored. In this work, we consider a large family of implicit networks defined parameterized contractive fixed point operators. We show a generalization bound for this class based on a covering number argument for the Rademacher complexity of these architectures.
Published: October 09, 2024
Last updated: February 04, 2026
Horizon-LM: A RAM-Centric Architecture for LLM Training
The rapid growth of large language models (LLMs) has outpaced the evolution of single-GPU hardware, making model scale increasingly constrained by memory capacity rather than computation. While modern training systems extend GPU memory through distributed parallelism and offloading across CPU and storage tiers, they fundamentally retain a GPU-centric execution paradigm in which GPUs host persistent model replicas and full autograd graphs. As a result, scaling large models remains tightly coupled to multi-GPU clusters, complex distributed runtimes, and unpredictable host memory consumption, creating substantial barriers for node-scale post-training workloads such as instruction tuning, alignment, and domain adaptation. We present Horizon-LM, a memory-centric training system that redefines the roles of CPU and GPU for large-model optimization. Horizon-LM treats host memory as the authoritative parameter store and uses GPUs solely as transient compute engines through a CPU-master, GPU-template execution model. By eliminating persistent GPU-resident modules and autograd graphs, employing explicit recomputation with manual gradient propagation, and introducing a pipelined double-buffered execution engine, Horizon-LM decouples model scale from GPU count and bounds memory usage to the theoretical parameter footprint. On a single H200 GPU with 1.5 TB host RAM, Horizon-LM reliably trains models up to 120B parameters. On a standard single A100 machine, Horizon-LM achieves up to 12.2× higher training throughput than DeepSpeed ZeRO-3 with CPU offloading while preserving numerical correctness. Across platforms and scales, Horizon-LM sustains high device utilization and predictable memory growth, demonstrating that host memory, not GPU memory, defines the true feasibility boundary for node-scale large-model training.
Published: February 04, 2026
Last updated: February 04, 2026
DGS-Net: Distillation-Guided Gradient Surgery for CLIP Fine-Tuning in AI-Generated Image Detection
The rapid progress of generative models such as GANs and diffusion models has led to the widespread proliferation of AI-generated images, raising concerns about misinformation, privacy violations, and trust erosion in digital media. Although large-scale multimodal models like CLIP offer strong transferable representations for detecting synthetic content, fine-tuning them often induces catastrophic forgetting, which degrades pre-trained priors and limits cross-domain generalization. To address this issue, we propose the Distillation-guided Gradient Surgery Network (DGS-Net), a novel framework that preserves transferable pre-trained priors while suppressing task-irrelevant components. Specifically, we introduce a gradient-space decomposition that separates harmful and beneficial descent directions during optimization. By projecting task gradients onto the orthogonal complement of harmful directions and aligning with beneficial ones distilled from a frozen CLIP encoder, DGS-Net achieves unified optimization of prior preservation and irrelevant suppression. Extensive experiments on 50 generative models demonstrate that our method outperforms state-of-the-art approaches by an average margin of 6.6, achieving superior detection performance and generalization across diverse generation techniques.
Published: November 17, 2025
Last updated: February 04, 2026
X2HDR: HDR Image Generation in a Perceptually Uniform Space
High-dynamic-range (HDR) formats and displays are becoming increasingly prevalent, yet state-of-the-art image generators (e.g., Stable Diffusion and FLUX) typically remain limited to low-dynamic-range (LDR) output due to the lack of large-scale HDR training data. In this work, we show that existing pretrained diffusion models can be easily adapted to HDR generation without retraining from scratch. A key challenge is that HDR images are natively represented in linear RGB, whose intensity and color statistics differ substantially from those of sRGB-encoded LDR images. This gap, however, can be effectively bridged by converting HDR inputs into perceptually uniform encodings (e.g., using PU21 or PQ). Empirically, we find that LDR-pretrained variational autoencoders (VAEs) reconstruct PU21-encoded HDR inputs with fidelity comparable to LDR data, whereas linear RGB inputs cause severe degradations. Motivated by this finding, we describe an efficient adaptation strategy that freezes the VAE and finetunes only the denoiser via low-rank adaptation in a perceptually uniform space. This results in a unified computational method that supports both text-to-HDR synthesis and single-image RAW-to-HDR reconstruction. Experiments demonstrate that our perceptually encoded adaptation consistently improves perceptual fidelity, text-image alignment, and effective dynamic range, relative to previous techniques.
Published: February 04, 2026
Last updated: February 04, 2026
Agentic AI in Healthcare & Medicine: A Seven-Dimensional Taxonomy for Empirical Evaluation of LLM-based Agents
Large Language Model (LLM)-based agents that plan, use tools and act has begun to shape healthcare and medicine. Reported studies demonstrate competence on various tasks ranging from EHR analysis and differential diagnosis to treatment planning and research workflows. Yet the literature largely consists of overviews which are either broad surveys or narrow dives into a single capability (e.g., memory, planning, reasoning), leaving healthcare work without a common frame. We address this by reviewing 49 studies using a seven-dimensional taxonomy: Cognitive Capabilities, Knowledge Management, Interaction Patterns, Adaptation & Learning, Safety & Ethics, Framework Typology and Core Tasks & Subtasks with 29 operational sub-dimensions. Using explicit inclusion and exclusion criteria and a labeling rubric (Fully Implemented, Partially Implemented, Not Implemented), we map each study to the taxonomy and report quantitative summaries of capability prevalence and co-occurrence patterns. Our empirical analysis surfaces clear asymmetries. For instance, the External Knowledge Integration sub-dimension under Knowledge Management is commonly realized (~76% Fully Implemented) whereas Event-Triggered Activation sub-dimenison under Interaction Patterns is largely absent (~92% Not Implemented) and Drift Detection & Mitigation sub-dimension under Adaptation & Learning is rare (~98% Not Implemented). Architecturally, Multi-Agent Design sub-dimension under Framework Typology is the dominant pattern (~82% Fully Implemented) while orchestration layers remain mostly partial. Across Core Tasks & Subtasks, information centric capabilities lead e.g., Medical Question Answering & Decision Support and Benchmarking & Simulation, while action and discovery oriented areas such as Treatment Planning & Prescription still show substantial gaps (~59% Not Implemented).
Published: February 04, 2026
Last updated: February 04, 2026
Robust Generalizable Heterogeneous Legal Link Prediction
Recent work has applied link prediction to large heterogeneous legal citation networks with rich meta-features. We find that this approach can be improved by including edge dropout and feature concatenation for the learning of more robust representations, which reduces error rates by up to 45
Published: February 04, 2026
Last updated: February 04, 2026
SE-Bench: Benchmarking Self-Evolution with Knowledge Internalization
True self-evolution requires agents to act as lifelong learners that internalize novel experiences to solve future problems. However, rigorously measuring this foundational capability is hindered by two obstacles: the entanglement of prior knowledge, where ``new'' knowledge may appear in pre-training data, and the entanglement of reasoning complexity, where failures may stem from problem difficulty rather than an inability to recall learned knowledge. We introduce SE-Bench, a diagnostic environment that obfuscates the NumPy library and its API doc into a pseudo-novel package with randomized identifiers. Agents are trained to internalize this package and evaluated on simple coding tasks without access to documentation, yielding a clean setting where tasks are trivial with the new API doc but impossible for base models without it. Our investigation reveals three insights: (1) the Open-Book Paradox, where training with reference documentation inhibits retention, requiring "Closed-Book Training" to force knowledge compression into weights; (2) the RL Gap, where standard RL fails to internalize new knowledge completely due to PPO clipping and negative gradients; and (3) the viability of Self-Play for internalization, proving models can learn from self-generated, noisy tasks when coupled with SFT, but not RL. Overall, SE-Bench establishes a rigorous diagnostic platform for self-evolution with knowledge internalization. Our code and dataset can be found at https://github.com/thunlp/SE-Bench.
Published: February 04, 2026
Last updated: February 04, 2026
Dynamic Pyramid Network for Efficient Multimodal Large Language Model
Multimodal large language models (MLLMs) have demonstrated impressive performance in various vision-language (VL) tasks, but their expensive computations still limit the real-world application. To address this issue, recent efforts aim to compress the visual features to save the computational costs of MLLMs. However, direct visual compression methods, e.g. efficient projectors, inevitably destroy the visual semantics in MLLM, especially in difficult samples. To overcome this shortcoming, we propose a novel dynamic pyramid network (DPN) for efficient MLLMs. Specifically, DPN formulates MLLM as a hierarchical structure where visual features are gradually compressed with increasing depth. In this case, even with a high compression ratio, fine-grained visual information can still be perceived in shallow layers. To maximize the benefit of DPN, we further propose an innovative Dynamic Pooling Experts (DPE) that can dynamically choose the optimal visual compression rate according to input features. With this design, harder samples will be assigned larger computations, thus preserving the model performance. To validate our approach, we conduct extensive experiments on two popular MLLMs and ten benchmarks. Experimental results show that DPN can save up to 56% average FLOPs on LLaVA while further achieving +0.74% performance gains. Besides, the generalization ability of DPN is also validated on the existing high-resolution MLLM called LLaVA-HR. The source code will be released at https://github.com/aihao2000/DPN-LLaVA.
Published: March 26, 2025
Last updated: February 04, 2026
Beyond Rewards in Reinforcement Learning for Cyber Defence
Recent years have seen an explosion of interest in autonomous cyber defence agents trained to defend computer networks using deep reinforcement learning. These agents are typically trained in cyber gym environments using dense, highly engineered reward functions which combine many penalties and incentives for a range of (un)desirable states and costly actions. Dense rewards help alleviate the challenge of exploring complex environments but risk biasing agents towards suboptimal and potentially riskier solutions, a critical issue in complex cyber environments. We thoroughly evaluate the impact of reward function structure on learning and policy behavioural characteristics using a variety of sparse and dense reward functions, two well-established cyber gyms, a range of network sizes, and both policy gradient and value-based RL algorithms. Our evaluation is enabled by a novel ground truth evaluation approach which allows directly comparing between different reward functions, illuminating the nuanced inter-relationships between rewards, action space and the risks of suboptimal policies in cyber environments. Our results show that sparse rewards, provided they are goal aligned and can be encountered frequently, uniquely offer both enhanced training reliability and more effective cyber defence agents with lower-risk policies. Surprisingly, sparse rewards can also yield policies that are better aligned with cyber defender goals and make sparing use of costly defensive actions without explicit reward-based numerical penalties.
Published: February 04, 2026
Last updated: February 04, 2026
Evolving Afferent Architectures: Biologically-inspired Models for Damage-Avoidance Learning
We introduce Afferent Learning, a framework that produces Computational Afferent Traces (CATs) as adaptive, internal risk signals for damage-avoidance learning. Inspired by biological systems, the framework uses a two-level architecture: evolutionary optimization (outer loop) discovers afferent sensing architectures that enable effective policy learning, while reinforcement learning (inner loop) trains damage-avoidance policies using these signals. This formalizes afferent sensing as providing an inductive bias for efficient learning: architectures are selected based on their ability to enable effective learning (rather than directly minimizing damage). We provide theoretical convergence guarantees under smoothness and bounded-noise assumptions. We illustrate the general approach in the challenging context of biomechanical digital twins operating over long time horizons (multiple decades of the life-course). Here, we find that CAT-based evolved architectures achieve significantly higher efficiency and better age-robustness than hand-designed baselines, enabling policies that exhibit age-dependent behavioral adaptation (23% reduction in high-risk actions). Ablation studies validate CAT signals, evolution, and predictive discrepancy as essential. We release code and data for reproducibility.
Published: February 04, 2026
Last updated: February 04, 2026
Skin Tokens: A Learned Compact Representation for Unified Autoregressive Rigging
The rapid proliferation of generative 3D models has created a critical bottleneck in animation pipelines: rigging. Existing automated methods are fundamentally limited by their approach to skinning, treating it as an ill-posed, high-dimensional regression task that is inefficient to optimize and is typically decoupled from skeleton generation. We posit this is a representation problem and introduce SkinTokens: a learned, compact, and discrete representation for skinning weights. By leveraging an FSQ-CVAE to capture the intrinsic sparsity of skinning, we reframe the task from continuous regression to a more tractable token sequence prediction problem. This representation enables TokenRig, a unified autoregressive framework that models the entire rig as a single sequence of skeletal parameters and SkinTokens, learning the complicated dependencies between skeletons and skin deformations. The unified model is then amenable to a reinforcement learning stage, where tailored geometric and semantic rewards improve generalization to complex, out-of-distribution assets. Quantitatively, the SkinTokens representation leads to a 98%-133% percents improvement in skinning accuracy over state-of-the-art methods, while the full TokenRig framework, refined with RL, enhances bone prediction by 17%-22%. Our work presents a unified, generative approach to rigging that yields higher fidelity and robustness, offering a scalable solution to a long-standing challenge in 3D content creation.
Published: February 04, 2026
Last updated: February 04, 2026
Y-Shaped Generative Flows
Modern continuous-time generative models typically induce V-shaped flows: each sample travels independently along a nearly straight trajectory from the prior to the data. Although effective, this independent movement overlooks the hierarchical structures that exist in real-world data. To address this, we introduce Y-shaped generative flows, a framework in which samples travel together along shared pathways before branching off to target-specific endpoints. Our formulation is theoretically justified, yet remains practical, requiring only minimal modifications to standard velocity-driven models. We implement this through a scalable, neural network-based training objective. Experiments on synthetic, image, and biological datasets demonstrate that our method recovers hierarchy-aware structures, improves distributional metrics over strong flow-based baselines, and reaches targets in fewer steps.
Published: October 13, 2025
Last updated: February 04, 2026
OmniSIFT: Modality-Asymmetric Token Compression for Efficient Omni-modal Large Language Models
Omni-modal Large Language Models (Omni-LLMs) have demonstrated strong capabilities in audio-video understanding tasks. However, their reliance on long multimodal token sequences leads to substantial computational overhead. Despite this challenge, token compression methods designed for Omni-LLMs remain limited. To bridge this gap, we propose OmniSIFT (Omni-modal Spatio-temporal Informed Fine-grained Token compression), a modality-asymmetric token compression framework tailored for Omni-LLMs. Specifically, OmniSIFT adopts a two-stage compression strategy: (i) a spatio-temporal video pruning module that removes video redundancy arising from both intra-frame structure and inter-frame overlap, and (ii) a vision-guided audio selection module that filters audio tokens. The entire framework is optimized end-to-end via a differentiable straight-through estimator. Extensive experiments on five representative benchmarks demonstrate the efficacy and robustness of OmniSIFT. Notably, for Qwen2.5-Omni-7B, OmniSIFT introduces only 4.85M parameters while maintaining lower latency than training-free baselines such as OmniZip. With merely 25% of the original token context, OmniSIFT consistently outperforms all compression baselines and even surpasses the performance of the full-token model on several tasks.
Published: February 04, 2026
Last updated: February 04, 2026
VISTA-Bench: Do Vision-Language Models Really Understand Visualized Text as Well as Pure Text?
Vision-Language Models (VLMs) have achieved impressive performance in cross-modal understanding across textual and visual inputs, yet existing benchmarks predominantly focus on pure-text queries. In real-world scenarios, language also frequently appears as visualized text embedded in images, raising the question of whether current VLMs handle such input requests comparably. We introduce VISTA-Bench, a systematic benchmark from multimodal perception, reasoning, to unimodal understanding domains. It evaluates visualized text understanding by contrasting pure-text and visualized-text questions under controlled rendering conditions. Extensive evaluation of over 20 representative VLMs reveals a pronounced modality gap: models that perform well on pure-text queries often degrade substantially when equivalent semantic content is presented as visualized text. This gap is further amplified by increased perceptual difficulty, highlighting sensitivity to rendering variations despite unchanged semantics. Overall, VISTA-Bench provides a principled evaluation framework to diagnose this limitation and to guide progress toward more unified language representations across tokenized text and pixels. The source dataset is available at https://github.com/QingAnLiu/VISTA-Bench.
Published: February 04, 2026
Last updated: February 04, 2026
Verification and Identification in ECG biometric on large-scale
This work studies electrocardiogram (ECG) biometrics at large scale, directly addressing a critical gap in the literature: the scarcity of large-scale evaluations with operational metrics and protocols that enable meaningful standardization and comparison across studies. We show that identity information is already present in tabular representations (fiducial features): even a simple MLP-based embedding network yields non-trivial performance, establishing a strong baseline before waveform modeling. We then adopt embedding-based deep learning models (ArcFace), first on features and then on ECG waveforms, showing a clear performance jump when moving from tabular inputs to waveforms, and a further gain with larger training sets and consistent normalization across train/val/test. On a large-scale test set, verification achieves high TAR at strict FAR thresholds (TAR=0.908 @ FAR=1e-3; TAR=0.820 @ FAR=1e-4) with EER=2.53% (all-vs-all); closed-set identification yields Rank@1=0.812 and Rank@10=0.910. In open-set, a two-stage pipeline (top-K shortlist on embeddings + re-ranking) reaches DIR@FAR up to 0.976 at FAR=1e-3 and 1e-4. Overall, the results show that ECG carries a measurable individual signature and that large-scale testing is essential to obtain realistic, comparable metrics. The study provides an operationally grounded benchmark that helps standardize evaluation across protocols.
Published: February 02, 2026
Last updated: February 04, 2026
Beyond the Control Equations: An Artifact Study of Implementation Quality in Robot Control Software
A controller -- a software module managing hardware behavior -- is a key component of a typical robot system. While control theory gives safety guarantees for standard controller designs, the practical implementation of controllers in software introduces complexities that are often overlooked. Controllers are often designed in continuous space, while the software is executed in discrete space, undermining some of the theoretical guarantees. Despite extensive research on control theory and control modeling, little attention has been paid to the implementations of controllers and how their theoretical guarantees are ensured in real-world software systems. We investigate 184 real-world controller implementations in open-source robot software. We examine their application context, the implementation characteristics, and the testing methods employed to ensure correctness. We find that the implementations often handle discretization in an ad hoc manner, leading to potential issues with real-time reliability. Challenges such as timing inconsistencies, lack of proper error handling, and inadequate consideration of real-time constraints further complicate matters. Testing practices are superficial, no systematic verification of theoretical guarantees is used, leaving possible inconsistencies between expected and actual behavior. Our findings highlight the need for improved implementation guidelines and rigorous verification techniques to ensure the reliability and safety of robotic controllers in practice.
Published: February 04, 2026
Last updated: February 04, 2026
Maximum-Volume Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a popular data embedding technique. Given a nonnegative data matrix X, it aims at finding two lower dimensional matrices, W and H, such that X≈ WH, where the factors W and H are constrained to be element-wise nonnegative. The factor W serves as a basis for the columns of X. In order to obtain more interpretable and unique solutions, minimum-volume NMF (MinVol NMF) minimizes the volume of W. In this paper, we consider the dual approach, where the volume of H is maximized instead; this is referred to as maximum-volume NMF (MaxVol NMF). MaxVol NMF is identifiable under the same conditions as MinVol NMF in the noiseless case, but it behaves rather differently in the presence of noise. In practice, MaxVol NMF is much more effective to extract a sparse decomposition and does not generate rank-deficient solutions. In fact, we prove that the solutions of MaxVol NMF with the largest volume correspond to clustering the columns of X in disjoint clusters, while the solutions of MinVol NMF with smallest volume are rank deficient. We propose two algorithms to solve MaxVol NMF. We also present a normalized variant of MaxVol NMF that exhibits better performance than MinVol NMF and MaxVol NMF, and can be interpreted as a continuum between standard NMF and orthogonal NMF. We illustrate our results in the context of hyperspectral unmixing.
Published: February 04, 2026
Last updated: February 04, 2026