1
Amplitude amplification and estimation require inverses
We prove that the generic quantum speedups for brute-force search and counting only hold when the process we apply them to can be efficiently inverted. The algorithms speeding up these problems, amplitude amplification and amplitude estimation, assume the ability to apply a state preparation unitary U and its inverse U^†; we give problem instances based on trace estimation where no algorithm which uses only U beats the naive, quadratically slower approach. Our proof of this is simple and goes through the compressed oracle method introduced by Zhandry. Since these two subroutines are responsible for the ubiquity of the quadratic "Grover" speedup in quantum algorithms, our result explains why such speedups are far harder to come by in the settings of quantum learning, metrology, and sensing. In these settings, U models the evolution of an experimental system, so implementing U^† can be much harder – tantamount to reversing time within the system. Our result suggests a dichotomy: without inverse access, quantum speedups are scarce; with it, quantum speedups abound.
Published: July 31, 2025
Last updated: July 31, 2025
Gaussian Variation Field Diffusion for High-fidelity Video-to-4D Synthesis
In this paper, we present a novel framework for video-to-4D generation that creates high-quality dynamic 3D content from single video inputs. Direct 4D diffusion modeling is extremely challenging due to costly data construction and the high-dimensional nature of jointly representing 3D shape, appearance, and motion. We address these challenges by introducing a Direct 4DMesh-to-GS Variation Field VAE that directly encodes canonical Gaussian Splats (GS) and their temporal variations from 3D animation data without per-instance fitting, and compresses high-dimensional animations into a compact latent space. Building upon this efficient representation, we train a Gaussian Variation Field diffusion model with temporal-aware Diffusion Transformer conditioned on input videos and canonical GS. Trained on carefully-curated animatable 3D objects from the Objaverse dataset, our model demonstrates superior generation quality compared to existing methods. It also exhibits remarkable generalization to in-the-wild video inputs despite being trained exclusively on synthetic data, paving the way for generating high-quality animated 3D content. Project page: https://gvfdiffusion.github.io/.
Published: July 31, 2025
Last updated: July 31, 2025
SUB: Benchmarking CBM Generalization via Synthetic Attribute Substitutions
Concept Bottleneck Models (CBMs) and other concept-based interpretable models show great promise for making AI applications more transparent, which is essential in fields like medicine. Despite their success, we demonstrate that CBMs struggle to reliably identify the correct concepts under distribution shifts. To assess the robustness of CBMs to concept variations, we introduce SUB: a fine-grained image and concept benchmark containing 38,400 synthetic images based on the CUB dataset. To create SUB, we select a CUB subset of 33 bird classes and 45 concepts to generate images which substitute a specific concept, such as wing color or belly pattern. We introduce a novel Tied Diffusion Guidance (TDG) method to precisely control generated images, where noise sharing for two parallel denoising processes ensures that both the correct bird class and the correct attribute are generated. This novel benchmark enables rigorous evaluation of CBMs and similar interpretable models, contributing to the development of more robust methods. Our code is available at https://github.com/ExplainableML/sub and the dataset at http://huggingface.co/datasets/Jessica-bader/SUB.
Published: July 31, 2025
Last updated: July 31, 2025
MonoFusion: Sparse-View 4D Reconstruction via Monocular Fusion
We address the problem of dynamic scene reconstruction from sparse-view videos. Prior work often requires dense multi-view captures with hundreds of calibrated cameras (e.g. Panoptic Studio). Such multi-view setups are prohibitively expensive to build and cannot capture diverse scenes in-the-wild. In contrast, we aim to reconstruct dynamic human behaviors, such as repairing a bike or dancing, from a small set of sparse-view cameras with complete scene coverage (e.g. four equidistant inward-facing static cameras). We find that dense multi-view reconstruction methods struggle to adapt to this sparse-view setup due to limited overlap between viewpoints. To address these limitations, we carefully align independent monocular reconstructions of each camera to produce time- and view-consistent dynamic scene reconstructions. Extensive experiments on PanopticStudio and Ego-Exo4D demonstrate that our method achieves higher quality reconstructions than prior art, particularly when rendering novel views. Code, data, and data-processing scripts are available on https://github.com/ImNotPrepared/MonoFusion.
Published: July 31, 2025
Last updated: July 31, 2025
Phi-Ground Tech Report: Advancing Perception in GUI Grounding
With the development of multimodal reasoning models, Computer Use Agents (CUAs), akin to Jarvis from \textit{"Iron Man"}, are becoming a reality. GUI grounding is a core component for CUAs to execute actual actions, similar to mechanical control in robotics, and it directly leads to the success or failure of the system. It determines actions such as clicking and typing, as well as related parameters like the coordinates for clicks. Current end-to-end grounding models still achieve less than 65\% accuracy on challenging benchmarks like ScreenSpot-pro and UI-Vision, indicating they are far from being ready for deployment. % , as a single misclick can result in unacceptable consequences. In this work, we conduct an empirical study on the training of grounding models, examining details from data collection to model training. Ultimately, we developed the \textbf{Phi-Ground} model family, which achieves state-of-the-art performance across all five grounding benchmarks for models under $10B$ parameters in agent settings. In the end-to-end model setting, our model still achieves SOTA results with scores of \textit{\textbf{43.2}} on ScreenSpot-pro and \textit{\textbf{27.2}} on UI-Vision. We believe that the various details discussed in this paper, along with our successes and failures, not only clarify the construction of grounding models but also benefit other perception tasks. Project homepage: \href{https://zhangmiaosen2000.github.io/Phi-Ground/}{https://zhangmiaosen2000.github.io/Phi-Ground/}
Published: July 31, 2025
Last updated: July 31, 2025
Half-Physics: Enabling Kinematic 3D Human Model with Physical Interactions
While current general-purpose 3D human models (e.g., SMPL-X) efficiently represent accurate human shape and pose, they lacks the ability to physically interact with the environment due to the kinematic nature. As a result, kinematic-based interaction models often suffer from issues such as interpenetration and unrealistic object dynamics. To address this limitation, we introduce a novel approach that embeds SMPL-X into a tangible entity capable of dynamic physical interactions with its surroundings. Specifically, we propose a "half-physics" mechanism that transforms 3D kinematic motion into a physics simulation. Our approach maintains kinematic control over inherent SMPL-X poses while ensuring physically plausible interactions with scenes and objects, effectively eliminating penetration and unrealistic object dynamics. Unlike reinforcement learning-based methods, which demand extensive and complex training, our half-physics method is learning-free and generalizes to any body shape and motion; meanwhile, it operates in real time. Moreover, it preserves the fidelity of the original kinematic motion while seamlessly integrating physical interactions
Published: July 31, 2025
Last updated: July 31, 2025
XSpecMesh: Quality-Preserving Auto-Regressive Mesh Generation Acceleration via Multi-Head Speculative Decoding
Current auto-regressive models can generate high-quality, topologically precise meshes; however, they necessitate thousands-or even tens of thousands-of next-token predictions during inference, resulting in substantial latency. We introduce XSpecMesh, a quality-preserving acceleration method for auto-regressive mesh generation models. XSpecMesh employs a lightweight, multi-head speculative decoding scheme to predict multiple tokens in parallel within a single forward pass, thereby accelerating inference. We further propose a verification and resampling strategy: the backbone model verifies each predicted token and resamples any tokens that do not meet the quality criteria. In addition, we propose a distillation strategy that trains the lightweight decoding heads by distilling from the backbone model, encouraging their prediction distributions to align and improving the success rate of speculative predictions. Extensive experiments demonstrate that our method achieves a 1.7x speedup without sacrificing generation quality. Our code will be released.
Published: July 31, 2025
Last updated: July 31, 2025
Cascaded Information Disclosure for Generalized Evaluation of Problem Solving Capabilities
While question-answering (QA) benchmark performance is an automatic and scalable method to compare LLMs, it is an indirect method of evaluating their underlying problem-solving capabilities. Therefore, we propose a holistic and generalizable framework based on cascaded question disclosure that provides a more accurate estimate of the models' problem-solving capabilities while maintaining the scalability and automation. This approach collects model responses in a stagewise manner with each stage revealing partial information about the question designed to elicit generalized reasoning in LLMs. We find that our approach not only provides a better comparison between LLMs, but also induces better intermediate traces in models compared to the standard QA paradigm. We empirically verify this behavior on diverse reasoning and knowledge-heavy QA datasets by comparing LLMs of varying sizes and families. Our approach narrows the performance gap observed in the standard QA evaluation settings, indicating that the prevalent indirect QA paradigm of evaluation overestimates the differences in performance between models. We further validate our findings by extensive ablation studies.
Published: July 31, 2025
Last updated: July 31, 2025
SimuRA: Towards General Goal-Oriented Agent via Simulative Reasoning Architecture with LLM-Based World Model
AI agents built on large language models (LLMs) hold enormous promise, but current practice focuses on a one-task-one-agent approach, which not only falls short of scalability and generality, but also suffers from the fundamental limitations of autoregressive LLMs. On the other hand, humans are general agents who reason by mentally simulating the outcomes of their actions and plans. Moving towards a more general and powerful AI agent, we introduce SimuRA, a goal-oriented architecture for generalized agentic reasoning. Based on a principled formulation of optimal agent in any environment, \modelname overcomes the limitations of autoregressive reasoning by introducing a world model for planning via simulation. The generalized world model is implemented using LLM, which can flexibly plan in a wide range of environments using the concept-rich latent space of natural language. Experiments on difficult web browsing tasks show that \modelname improves the success of flight search from 0\% to 32.2\%. World-model-based planning, in particular, shows consistent advantage of up to 124\% over autoregressive planning, demonstrating the advantage of world model simulation as a reasoning paradigm. We are excited about the possibility for training a single, general agent model based on LLMs that can act superintelligently in all environments. To start, we make SimuRA, a web-browsing agent built on \modelname with pretrained LLMs, available as a research demo for public testing.
Published: July 31, 2025
Last updated: July 31, 2025
GenoMAS: A Multi-Agent Framework for Scientific Discovery via Code-Driven Gene Expression Analysis
Gene expression analysis holds the key to many biomedical discoveries, yet extracting insights from raw transcriptomic data remains formidable due to the complexity of multiple large, semi-structured files and the need for extensive domain expertise. Current automation approaches are often limited by either inflexible workflows that break down in edge cases or by fully autonomous agents that lack the necessary precision for rigorous scientific inquiry. GenoMAS charts a different course by presenting a team of LLM-based scientists that integrates the reliability of structured workflows with the adaptability of autonomous agents. GenoMAS orchestrates six specialized LLM agents through typed message-passing protocols, each contributing complementary strengths to a shared analytic canvas. At the heart of GenoMAS lies a guided-planning framework: programming agents unfold high-level task guidelines into Action Units and, at each juncture, elect to advance, revise, bypass, or backtrack, thereby maintaining logical coherence while bending gracefully to the idiosyncrasies of genomic data. On the GenoTEX benchmark, GenoMAS reaches a Composite Similarity Correlation of 89.13 identification, surpassing the best prior art by 10.61 respectively. Beyond metrics, GenoMAS surfaces biologically plausible gene-phenotype associations corroborated by the literature, all while adjusting for latent confounders. Code is available at https://github.com/Liu-Hy/GenoMAS.
Published: July 28, 2025
Last updated: July 31, 2025
SeqAffordSplat: Scene-level Sequential Affordance Reasoning on 3D Gaussian Splatting
3D affordance reasoning, the task of associating human instructions with the functional regions of 3D objects, is a critical capability for embodied agents. Current methods based on 3D Gaussian Splatting (3DGS) are fundamentally limited to single-object, single-step interactions, a paradigm that falls short of addressing the long-horizon, multi-object tasks required for complex real-world applications. To bridge this gap, we introduce the novel task of Sequential 3D Gaussian Affordance Reasoning and establish SeqAffordSplat, a large-scale benchmark featuring 1800+ scenes to support research on long-horizon affordance understanding in complex 3DGS environments. We then propose SeqSplatNet, an end-to-end framework that directly maps an instruction to a sequence of 3D affordance masks. SeqSplatNet employs a large language model that autoregressively generates text interleaved with special segmentation tokens, guiding a conditional decoder to produce the corresponding 3D mask. To handle complex scene geometry, we introduce a pre-training strategy, Conditional Geometric Reconstruction, where the model learns to reconstruct complete affordance region masks from known geometric observations, thereby building a robust geometric prior. Furthermore, to resolve semantic ambiguities, we design a feature injection mechanism that lifts rich semantic features from 2D Vision Foundation Models (VFM) and fuses them into the 3D decoder at multiple scales. Extensive experiments demonstrate that our method sets a new state-of-the-art on our challenging benchmark, effectively advancing affordance reasoning from single-step interactions to complex, sequential tasks at the scene level.
Published: July 31, 2025
Last updated: July 31, 2025
Consensus-Driven Active Model Selection
The widespread availability of off-the-shelf machine learning models poses a challenge: which model, of the many available candidates, should be chosen for a given data analysis task? This question of model selection is traditionally answered by collecting and annotating a validation dataset -- a costly and time-intensive process. We propose a method for active model selection, using predictions from candidate models to prioritize the labeling of test data points that efficiently differentiate the best candidate. Our method, CODA, performs consensus-driven active model selection by modeling relationships between classifiers, categories, and data points within a probabilistic framework. The framework uses the consensus and disagreement between models in the candidate pool to guide the label acquisition process, and Bayesian inference to update beliefs about which model is best as more information is collected. We validate our approach by curating a collection of 26 benchmark tasks capturing a range of model selection scenarios. CODA outperforms existing methods for active model selection significantly, reducing the annotation effort required to discover the best model by upwards of 70% compared to the previous state-of-the-art. Code and data are available at https://github.com/justinkay/coda.
Published: July 31, 2025
Last updated: July 31, 2025
Learning to Align and Refine: A Foundation-to-Diffusion Framework for Occlusion-Robust Two-Hand Reconstruction
Two-hand reconstruction from monocular images faces persistent challenges due to complex and dynamic hand postures and occlusions, causing significant difficulty in achieving plausible interaction alignment. Existing approaches struggle with such alignment issues, often resulting in misalignment and penetration artifacts. To tackle this, we propose a dual-stage Foundation-to-Diffusion framework that precisely align 2D prior guidance from vision foundation models and diffusion-based generative 3D interaction refinement to achieve occlusion-robust two-hand reconstruction. First, we introduce a lightweight fusion alignment encoder that aligns fused multimodal 2D priors like key points, segmentation maps, and depth cues from vision foundation models during training. This provides robust structured guidance, further enabling efficient inference without heavy foundation model encoders at test time while maintaining high reconstruction accuracy. Second, we implement a two-hand diffusion model explicitly trained to convert interpenetrated 3D poses into plausible, penetration-free counterparts. Through collision gradient-guided denoising, the model rectifies artifacts while preserving natural spatial relationships between hands. Extensive evaluations demonstrate that our method achieves state-of-the-art performance on InterHand2.6M, HIC, and FreiHAND datasets, significantly advancing occlusion handling and interaction robustness. Our code will be publicly released.
Published: March 22, 2025
Last updated: July 31, 2025
Formal Bayesian Transfer Learning via the Total Risk Prior
In analyses with severe data-limitations, augmenting the target dataset with information from ancillary datasets in the application domain, called source datasets, can lead to significantly improved statistical procedures. However, existing methods for this transfer learning struggle to deal with situations where the source datasets are also limited and not guaranteed to be well-aligned with the target dataset. A typical strategy is to use the empirical loss minimizer on the source data as a prior mean for the target parameters, which places the estimation of source parameters outside of the Bayesian formalism. Our key conceptual contribution is to use a risk minimizer conditional on source parameters instead. This allows us to construct a single joint prior distribution for all parameters from the source datasets as well as the target dataset. As a consequence, we benefit from full Bayesian uncertainty quantification and can perform model averaging via Gibbs sampling over indicator variables governing the inclusion of each source dataset. We show how a particular instantiation of our prior leads to a Bayesian Lasso in a transformed coordinate system and discuss computational techniques to scale our approach to moderately sized datasets. We also demonstrate that recently proposed minimax-frequentist transfer learning techniques may be viewed as an approximate Maximum a Posteriori approach to our model. Finally, we demonstrate superior predictive performance relative to the frequentist baseline on a genetics application, especially when the source data are limited.
Published: July 31, 2025
Last updated: July 31, 2025
Scaled Beta Models and Feature Dilution for Dynamic Ticket Pricing
A novel approach is presented for identifying distinct signatures of performing acts in the secondary ticket resale market by analyzing dynamic pricing distributions. Using a newly curated, time series dataset from the SeatGeek API, we model ticket pricing distributions as scaled Beta distributions. This enables accurate parameter estimation from incomplete statistical data using a hybrid of quantile matching and the method of moments. Incorporating the estimated α and β parameters into Random Forest classifiers significantly improves pairwise artist classification accuracy, demonstrating the unique economic signatures in event pricing data. Additionally, we provide theoretical and empirical evidence that incorporating zero-variance (constant-value) features into Random Forest models acts as an implicit regularizer, enhancing feature variety and robustness. This regularization promotes deeper, more varied trees in the ensemble, improving the bias-variance tradeoff and mitigating overfitting to dominant features. These findings are validated on both the new ticket pricing dataset and the standard UCI ML handwritten digits dataset.
Published: July 31, 2025
Last updated: July 31, 2025
Perception-Aware Policy Optimization for Multimodal Reasoning
Reinforcement Learning with Verifiable Rewards (RLVR) has proven to be a highly effective strategy for endowing Large Language Models (LLMs) with robust multi-step reasoning abilities. However, its design and optimizations remain tailored to purely textual domains, resulting in suboptimal performance when applied to multimodal reasoning tasks. In particular, we observe that a major source of error in current multimodal reasoning lies in the perception of visual inputs. To address this bottleneck, we propose PAPO, a novel policy gradient algorithm that encourages the model to learn to perceive while learning to reason. Specifically, we introduce the Implicit Perception Loss in the form of a KL divergence term, which can be seamlessly plugged into mainstream RLVR algorithms such as GRPO and DAPO. Notably, PAPO does not rely on additional data curation, reward models, or stronger teacher models. To further enhance the training stability of PAPO, we introduce the Double Entropy Loss, which effectively regularizes the new KL objective without compromising performance. Despite its simplicity, PAPO yields significant overall improvements of 4.4%-17.5% on diverse multimodal benchmarks. The improvements are more pronounced, approaching 8.0%-19.1%, on tasks with high vision dependency. We also observe a substantial reduction of 30.5% in perception errors, indicating improved perceptual capabilities with PAPO. Overall, our work introduces a deeper integration of perception-aware supervision into core learning objectives and lays the groundwork for a new RL framework that encourages visually grounded reasoning. Code and data will be made publicly available for research purposes. Project page: https://mikewangwzhl.github.io/PAPO.
Published: July 08, 2025
Last updated: July 31, 2025
Topology Optimization in Medical Image Segmentation with Fast Euler Characteristic
Deep learning-based medical image segmentation techniques have shown promising results when evaluated based on conventional metrics such as the Dice score or Intersection-over-Union. However, these fully automatic methods often fail to meet clinically acceptable accuracy, especially when topological constraints should be observed, e.g., continuous boundaries or closed surfaces. In medical image segmentation, the correctness of a segmentation in terms of the required topological genus sometimes is even more important than the pixel-wise accuracy. Existing topology-aware approaches commonly estimate and constrain the topological structure via the concept of persistent homology (PH). However, these methods are difficult to implement for high dimensional data due to their polynomial computational complexity. To overcome this problem, we propose a novel and fast approach for topology-aware segmentation based on the Euler Characteristic (χ). First, we propose a fast formulation for χ computation in both 2D and 3D. The scalar χ error between the prediction and ground-truth serves as the topological evaluation metric. Then we estimate the spatial topology correctness of any segmentation network via a so-called topological violation map, i.e., a detailed map that highlights regions with χ errors. Finally, the segmentation results from the arbitrary network are refined based on the topological violation maps by a topology-aware correction network. Our experiments are conducted on both 2D and 3D datasets and show that our method can significantly improve topological correctness while preserving pixel-wise segmentation accuracy.
Published: July 31, 2025
Last updated: July 31, 2025
Generalizable Motion Policies through Keypoint Parameterization and Transportation Maps
Learning from Interactive Demonstrations has revolutionized the way non-expert humans teach robots. It is enough to kinesthetically move the robot around to teach pick-and-place, dressing, or cleaning policies. However, the main challenge is correctly generalizing to novel situations, e.g., different surfaces to clean or different arm postures to dress. This article proposes a novel task parameterization and generalization to transport the original robot policy, i.e., position, velocity, orientation, and stiffness. Unlike the state of the art, only a set of keypoints is tracked during the demonstration and the execution, e.g., a point cloud of the surface to clean. We then propose to fit a nonlinear transformation that would deform the space and then the original policy using the paired source and target point sets. The use of function approximators like Gaussian Processes allows us to generalize, or transport, the policy from every space location while estimating the uncertainty of the resulting policy due to the limited task keypoints and the reduced number of demonstrations. We compare the algorithm's performance with state-of-the-art task parameterization alternatives and analyze the effect of different function approximators. We also validated the algorithm on robot manipulation tasks, i.e., different posture arm dressing, different location product reshelving, and different shape surface cleaning.
Published: April 20, 2024
Last updated: July 31, 2025
iFANnpp: Nuclear Power Plant Digital Twin for Robots and Autonomous Intelligence
Robotics has gained attention in the nuclear industry due to its precision and ability to automate tasks. However, there is a critical need for advanced simulation and control methods to predict robot behavior and optimize plant performance, motivating the use of digital twins. Most existing digital twins do not offer a total design of a nuclear power plant. Moreover, they are designed for specific algorithms or tasks, making them unsuitable for broader research applications. In response, this work proposes a comprehensive nuclear power plant digital twin designed to improve real-time monitoring, operational efficiency, and predictive maintenance. A full nuclear power plant is modeled in Unreal Engine 5 and integrated with a high-fidelity Generic Pressurized Water Reactor Simulator to create a realistic model of a nuclear power plant and a real-time updated virtual environment. The virtual environment provides various features for researchers to easily test custom robot algorithms and frameworks.
Published: October 11, 2024
Last updated: July 31, 2025
Improving annotator selection in Active Learning using a mood and fatigue-aware Recommender System
This study centers on overcoming the challenge of selecting the best annotators for each query in Active Learning (AL), with the objective of minimizing misclassifications. AL recognizes the challenges related to cost and time when acquiring labeled data, and decreases the number of labeled data needed. Nevertheless, there is still the necessity to reduce annotation errors, aiming to be as efficient as possible, to achieve the expected accuracy faster. Most strategies for query-annotator pairs do not consider internal factors that affect productivity, such as mood, attention, motivation, and fatigue levels. This work addresses this gap in the existing literature, by not only considering how the internal factors influence annotators (mood and fatigue levels) but also presenting a new query-annotator pair strategy, using a Knowledge-Based Recommendation System (RS). The RS ranks the available annotators, allowing to choose one or more to label the queried instance using their past accuracy values, and their mood and fatigue levels, as well as information about the instance queried. This work bases itself on existing literature on mood and fatigue influence on human performance, simulating annotators in a realistic manner, and predicting their performance with the RS. The results show that considering past accuracy values, as well as mood and fatigue levels reduces the number of annotation errors made by the annotators, and the uncertainty of the model through its training, when compared to not using internal factors. Accuracy and F1-score values were also better in the proposed approach, despite not being as substantial as the aforementioned. The methodologies and findings presented in this study begin to explore the open challenge of human cognitive factors affecting AL.
Published: July 31, 2025
Last updated: July 31, 2025
Slot Attention with Re-Initialization and Self-Distillation
Unlike popular solutions based on dense feature maps, Object-Centric Learning (OCL) represents visual scenes as sub-symbolic object-level feature vectors, termed slots, which are highly versatile for tasks involving visual modalities. OCL typically aggregates object superpixels into slots by iteratively applying competitive cross attention, known as Slot Attention, with the slots as the query. However, once initialized, these slots are reused naively, causing redundant slots to compete with informative ones for representing objects. This often results in objects being erroneously segmented into parts. Additionally, mainstream methods derive supervision signals solely from decoding slots into the input's reconstruction, overlooking potential supervision based on internal information. To address these issues, we propose Slot Attention with re-Initialization and self-Distillation (DIAS): i) We reduce redundancy in the aggregated slots and re-initialize extra aggregation to update the remaining slots; ii) We drive the bad attention map at the first aggregation iteration to approximate the good at the last iteration to enable self-distillation. Experiments demonstrate that DIAS achieves state-of-the-art on OCL tasks like object discovery and recognition, while also improving advanced visual prediction and reasoning. Our code is available on https://github.com/Genera1Z/DIAS.
Published: July 31, 2025
Last updated: July 31, 2025
CoT-Self-Instruct: Building high-quality synthetic prompts for reasoning and non-reasoning tasks
We propose CoT-Self-Instruct, a synthetic data generation method that instructs LLMs to first reason and plan via Chain-of-Thought (CoT) based on the given seed tasks, and then to generate a new synthetic prompt of similar quality and complexity for use in LLM training, followed by filtering for high-quality data with automatic metrics. In verifiable reasoning, our synthetic data significantly outperforms existing training datasets, such as s1k and OpenMathReasoning, across MATH500, AMC23, AIME24 and GPQA-Diamond. For non-verifiable instruction-following tasks, our method surpasses the performance of human or standard self-instruct prompts on both AlpacaEval 2.0 and Arena-Hard.
Published: July 31, 2025
Last updated: July 31, 2025
Vector-Quantized Vision Foundation Models for Object-Centric Learning
Perceiving visual scenes as objects and background–like humans do–Object-Centric Learning (OCL) aggregates image or video feature maps into object-level feature vectors, termed slots. OCL's self-supervision of reconstructing the input from these aggregated slots struggles with complex object textures, thus Vision Foundation Model (VFM) representations are used as the aggregation input and reconstruction target. However, existing methods leverage VFM representations in diverse ways and often fail to fully exploit their potential. In response, we propose a clean architecture–Vector-Quantized VFMs for OCL (VQ-VFM-OCL, or VVO)–that unifies mainstream OCL methods. The key to our unification is simple yet effective, just shared quantizing the same VFM representation as the reconstruction target. Through mathematical modeling and statistical verification, we further analyze why VFM representations facilitate OCL aggregation and how their shared quantization as reconstruction targets strengthens OCL supervision. Experiments show that across different VFMs, aggregators and decoders, our VVO consistently outperforms baselines in object discovery and recognition, as well as downstream visual prediction and reasoning. The implementation and model checkpoints are available on https://github.com/Genera1Z/VQ-VFM-OCL.
Published: February 27, 2025
Last updated: July 31, 2025
Spatial-Temporal Reinforcement Learning for Network Routing with Non-Markovian Traffic
Reinforcement Learning (RL) has been widely used for packet routing in communication networks, but traditional RL methods rely on the Markov assumption that the current state contains all necessary information for decision-making. In reality, internet traffic is non-Markovian, and past states do influence routing performance. Moreover, common deep RL approaches use function approximators, such as neural networks, that do not model the spatial structure in network topologies. To address these shortcomings, we design a network environment with non-Markovian traffic and introduce a spatial-temporal RL (STRL) framework for packet routing. Our approach outperforms traditional baselines by more than 19% during training and 7% for inference despite a change in network topology.
Published: July 27, 2025
Last updated: July 31, 2025
PGLib-CO2: A Power Grid Library for Computing and Optimizing Carbon Emissions
A sustainable electricity infrastructure requires the explicit integration of carbon emissions into power system modeling and optimization paradigms. However, existing open-source datasets for power system R&D lack generator-level carbon emission profiling, limiting the ability to benchmark and compare various carbon-aware grid operational strategies. To address this gap, this work introduces PGLib-CO2, an open-source extension to the widely adopted PGLib-OPF test case library. PGLib-CO2 enriches standard network cases with CO2 and CO2-equivalent emission intensity factors by expanding the fuel-type categorization used by PGLib-OPF, attaining a realistic generator-level carbon profiling. It is also packaged for both Python's pandapower and Julia's PowerModels.jl, for a seamless, user-friendly integration of emission modeling into grid computation and optimization tasks. The dataset produced by PGLib-CO2 can support grid-based carbon accounting, emission metric evaluation, and integration into AC optimal power flow (OPF) and optimal load shifting (OLS) formulations. We demonstrate PGLib-CO2's utility through case studies that quantify cost-emission trade-offs and optimize a carbon-aware objective function. By standardizing carbon-enhanced test cases, PGLib-CO2 provides an open-source, reproducible foundation for benchmarking carbon-aware computation, facilitating future research in sustainable power system operation.
Published: June 17, 2025
Last updated: July 31, 2025
Rule2Text: Natural Language Explanation of Logical Rules in Knowledge Graphs
Knowledge graphs (KGs) often contain sufficient information to support the inference of new facts. Identifying logical rules not only improves the completeness of a knowledge graph but also enables the detection of potential errors, reveals subtle data patterns, and enhances the overall capacity for reasoning and interpretation. However, the complexity of such rules, combined with the unique labeling conventions of each KG, can make them difficult for humans to understand. In this paper, we explore the potential of large language models to generate natural language explanations for logical rules. Specifically, we extract logical rules using the AMIE 3.5.1 rule discovery algorithm from the benchmark dataset FB15k-237 and two large-scale datasets, FB-CVT-REV and FB+CVT-REV. We examine various prompting strategies, including zero- and few-shot prompting, including variable entity types, and chain-of-thought reasoning. We conduct a comprehensive human evaluation of the generated explanations based on correctness, clarity, and hallucination, and also assess the use of large language models as automatic judges. Our results demonstrate promising performance in terms of explanation correctness and clarity, although several challenges remain for future research. All scripts and data used in this study are publicly available at https://github.com/idirlab/KGRule2NL}{https://github.com/idirlab/KGRule2NL.
Published: July 31, 2025
Last updated: July 31, 2025
How AI Ideas Affect the Creativity, Diversity, and Evolution of Human Ideas: Evidence From a Large, Dynamic Experiment
Exposure to large language model output is rapidly increasing. How will seeing AI-generated ideas affect human ideas? We conducted an experiment (800+ participants, 40+ countries) where participants viewed creative ideas that were from ChatGPT or prior experimental participants and then brainstormed their own idea. We varied the number of AI-generated examples (none, low, or high exposure) and if the examples were labeled as 'AI' (disclosure). Our dynamic experiment design -- ideas from prior participants in an experimental condition are used as stimuli for future participants in the same experimental condition -- speaks to the interdependent process of cultural creation: creative ideas are built upon prior ideas. Hence, we capture the compounding effects of having LLMs 'in the culture loop'. We find that high AI exposure (but not low AI exposure) did not affect the creativity of individual ideas but did increase the average amount and rate of change of collective idea diversity. AI made ideas different, not better. There were no main effects of disclosure. We also found that self-reported creative people were less influenced by knowing an idea was from AI and that participants may knowingly adopt AI ideas when the task is difficult. Our findings suggest that introducing AI ideas may increase collective diversity but not individual creativity.
Published: January 24, 2024
Last updated: July 31, 2025
DICOM De-Identification via Hybrid AI and Rule-Based Framework for Scalable, Uncertainty-Aware Redaction
Access to medical imaging and associated text data has the potential to drive major advances in healthcare research and patient outcomes. However, the presence of Protected Health Information (PHI) and Personally Identifiable Information (PII) in Digital Imaging and Communications in Medicine (DICOM) files presents a significant barrier to the ethical and secure sharing of imaging datasets. This paper presents a hybrid de-identification framework developed by Impact Business Information Solutions (IBIS) that combines rule-based and AI-driven techniques, and rigorous uncertainty quantification for comprehensive PHI/PII removal from both metadata and pixel data. Our approach begins with a two-tiered rule-based system targeting explicit and inferred metadata elements, further augmented by a large language model (LLM) fine-tuned for Named Entity Recognition (NER), and trained on a suite of synthetic datasets simulating realistic clinical PHI/PII. For pixel data, we employ an uncertainty-aware Faster R-CNN model to localize embedded text, extract candidate PHI via Optical Character Recognition (OCR), and apply the NER pipeline for final redaction. Crucially, uncertainty quantification provides confidence measures for AI-based detections to enhance automation reliability and enable informed human-in-the-loop verification to manage residual risks. This uncertainty-aware deidentification framework achieves robust performance across benchmark datasets and regulatory standards, including DICOM, HIPAA, and TCIA compliance metrics. By combining scalable automation, uncertainty quantification, and rigorous quality assurance, our solution addresses critical challenges in medical data de-identification and supports the secure, ethical, and trustworthy release of imaging data for research.
Published: July 31, 2025
Last updated: July 31, 2025
Distributed AI Agents for Cognitive Underwater Robot Autonomy
Achieving robust cognitive autonomy in robots navigating complex, unpredictable environments remains a fundamental challenge in robotics. This paper presents Underwater Robot Self-Organizing Autonomy (UROSA), a groundbreaking architecture leveraging distributed Large Language Model AI agents integrated within the Robot Operating System 2 (ROS 2) framework to enable advanced cognitive capabilities in Autonomous Underwater Vehicles. UROSA decentralises cognition into specialised AI agents responsible for multimodal perception, adaptive reasoning, dynamic mission planning, and real-time decision-making. Central innovations include flexible agents dynamically adapting their roles, retrieval-augmented generation utilising vector databases for efficient knowledge management, reinforcement learning-driven behavioural optimisation, and autonomous on-the-fly ROS 2 node generation for runtime functional extensibility. Extensive empirical validation demonstrates UROSA's promising adaptability and reliability through realistic underwater missions in simulation and real-world deployments, showing significant advantages over traditional rule-based architectures in handling unforeseen scenarios, environmental uncertainties, and novel mission objectives. This work not only advances underwater autonomy but also establishes a scalable, safe, and versatile cognitive robotics framework capable of generalising to a diverse array of real-world applications.
Published: July 31, 2025
Last updated: July 31, 2025
RAGNet: Large-scale Reasoning-based Affordance Segmentation Benchmark towards General Grasping
General robotic grasping systems require accurate object affordance perception in diverse open-world scenarios following human instructions. However, current studies suffer from the problem of lacking reasoning-based large-scale affordance prediction data, leading to considerable concern about open-world effectiveness. To address this limitation, we build a large-scale grasping-oriented affordance segmentation benchmark with human-like instructions, named RAGNet. It contains 273k images, 180 categories, and 26k reasoning instructions. The images cover diverse embodied data domains, such as wild, robot, ego-centric, and even simulation data. They are carefully annotated with an affordance map, while the difficulty of language instructions is largely increased by removing their category name and only providing functional descriptions. Furthermore, we propose a comprehensive affordance-based grasping framework, named AffordanceNet, which consists of a VLM pre-trained on our massive affordance data and a grasping network that conditions an affordance map to grasp the target. Extensive experiments on affordance segmentation benchmarks and real-robot manipulation tasks show that our model has a powerful open-world generalization ability. Our data and code is available at https://github.com/wudongming97/AffordanceNet.
Published: July 31, 2025
Last updated: July 31, 2025
Coordinating Search-Informed Reasoning and Reasoning-Guided Search in Claim Verification
Multi-hop claim verification is inherently challenging, requiring multi-step reasoning to construct verification chains while iteratively searching for information to uncover hidden bridging facts. This process is fundamentally interleaved, as effective reasoning relies on dynamically retrieved evidence, while effective search demands reasoning to refine queries based on partial information. To achieve this, we propose Hierarchical Agent Reasoning and Information Search (HARIS), explicitly modeling the coordinated process of reasoning-driven searching and search-informed reasoning. HARIS consists of a high-level reasoning agent that focuses on constructing the main verification chain, generating factual questions when more information is needed, and a low-level search agent that iteratively retrieves more information, refining its search based on intermediate findings. This design allows each agent to specialize in its respective task, enhancing verification accuracy and interpretability. HARIS is trained using reinforcement learning with outcome-based rewards. Experimental results on the EX-FEVER and HOVER benchmarks demonstrate that HARIS achieves strong performance, greatly advancing multi-hop claim verification.
Published: June 09, 2025
Last updated: July 31, 2025
Collaborative Perceiver: Elevating Vision-based 3D Object Detection via Local Density-Aware Spatial Occupancy
Vision-based bird's-eye-view (BEV) 3D object detection has advanced significantly in autonomous driving by offering cost-effectiveness and rich contextual information. However, existing methods often construct BEV representations by collapsing extracted object features, neglecting intrinsic environmental contexts, such as roads and pavements. This hinders detectors from comprehensively perceiving the characteristics of the physical world. To alleviate this, we introduce a multi-task learning framework, Collaborative Perceiver (CoP), that leverages spatial occupancy as auxiliary information to mine consistent structural and conceptual similarities shared between 3D object detection and occupancy prediction tasks, bridging gaps in spatial representations and feature refinement. To this end, we first propose a pipeline to generate dense occupancy ground truths incorporating local density information (LDO) for reconstructing detailed environmental information. Next, we employ a voxel-height-guided sampling (VHS) strategy to distill fine-grained local features according to distinct object properties. Furthermore, we develop a global-local collaborative feature fusion (CFF) module that seamlessly integrates complementary knowledge between both tasks, thus composing more robust BEV representations. Extensive experiments on the nuScenes benchmark demonstrate that CoP outperforms existing vision-based frameworks, achieving 49.5\% mAP and 59.2\% NDS on the test set. Code and supplementary materials are available at this link https://github.com/jichengyuan/Collaborative-Perceiver.
Published: July 28, 2025
Last updated: July 31, 2025
A Theoretical Framework for Explaining Reinforcement Learning with Shapley Values
Reinforcement learning agents can achieve super-human performance in complex decision-making tasks, but their behaviour is often difficult to understand and explain. This lack of explanation limits deployment, especially in safety-critical settings where understanding and trust are essential. We identify three core explanatory targets that together provide a comprehensive view of reinforcement learning agents: behaviour, outcomes, and predictions. We develop a unified theoretical framework for explaining these three elements of reinforcement learning agents through the influence of individual features that the agent observes in its environment. We derive feature influences by using Shapley values, which collectively and uniquely satisfy a set of well-motivated axioms for fair and consistent credit assignment. The proposed approach, Shapley Values for Explaining Reinforcement Learning (SVERL), provides a single theoretical framework to comprehensively and meaningfully explain reinforcement learning agents. It yields explanations with precise semantics that are not only interpretable but also mathematically justified, enabling us to identify and correct conceptual issues in prior explanations. Through illustrative examples, we show how SVERL produces useful, intuitive explanations of agent behaviour, outcomes, and predictions, which are not apparent from observing agent behaviour alone.
Published: May 12, 2025
Last updated: July 31, 2025
Intersectional Divergence: Measuring Fairness in Regression
Fairness in machine learning research is commonly framed in the context of classification tasks, leaving critical gaps in regression. In this paper, we propose a novel approach to measure intersectional fairness in regression tasks, going beyond the focus on single protected attributes from existing work to consider combinations of all protected attributes. Furthermore, we contend that it is insufficient to measure the average error of groups without regard for imbalanced domain preferences. Accordingly, we propose Intersectional Divergence (ID) as the first fairness measure for regression tasks that 1) describes fair model behavior across multiple protected attributes and 2) differentiates the impact of predictions in target ranges most relevant to users. We extend our proposal demonstrating how ID can be adapted into a loss function, IDLoss, that satisfies convergence guarantees and has piecewise smooth properties that enable practical optimization. Through an extensive experimental evaluation, we demonstrate how ID allows unique insights into model behavior and fairness, and how incorporating IDLoss into optimization can considerably improve single-attribute and intersectional model fairness while maintaining a competitive balance in predictive performance.
Published: May 01, 2025
Last updated: July 31, 2025
Seed-Prover: Deep and Broad Reasoning for Automated Theorem Proving
LLMs have demonstrated strong mathematical reasoning abilities by leveraging reinforcement learning with long chain-of-thought, yet they continue to struggle with theorem proving due to the lack of clear supervision signals when solely using natural language. Dedicated domain-specific languages like Lean provide clear supervision via formal verification of proofs, enabling effective training through reinforcement learning. In this work, we propose Seed-Prover, a lemma-style whole-proof reasoning model. Seed-Prover can iteratively refine its proof based on Lean feedback, proved lemmas, and self-summarization. To solve IMO-level contest problems, we design three test-time inference strategies that enable both deep and broad reasoning. Seed-Prover proves 78.1% of formalized past IMO problems, saturates MiniF2F, and achieves over 50% on PutnamBench, outperforming the previous state-of-the-art by a large margin. To address the lack of geometry support in Lean, we introduce a geometry reasoning engine Seed-Geometry, which outperforms previous formal geometry engines. We use these two systems to participate in IMO 2025 and fully prove 5 out of 6 problems. This work represents a significant advancement in automated mathematical reasoning, demonstrating the effectiveness of formal verification with long chain-of-thought reasoning.
Published: July 31, 2025
Last updated: July 31, 2025
ClaraVid: A Holistic Scene Reconstruction Benchmark From Aerial Perspective With Delentropy-Based Complexity Profiling
The development of aerial holistic scene understanding algorithms is hindered by the scarcity of comprehensive datasets that enable both semantic and geometric reconstruction. While synthetic datasets offer an alternative, existing options exhibit task-specific limitations, unrealistic scene compositions, and rendering artifacts that compromise real-world applicability. We introduce ClaraVid, a synthetic aerial dataset specifically designed to overcome these limitations. Comprising 16,917 high-resolution images captured at 4032x3024 from multiple viewpoints across diverse landscapes, ClaraVid provides dense depth maps, panoptic segmentation, sparse point clouds, and dynamic object masks, while mitigating common rendering artifacts. To further advance neural reconstruction, we introduce the Delentropic Scene Profile (DSP), a novel complexity metric derived from differential entropy analysis, designed to quantitatively assess scene difficulty and inform reconstruction tasks. Utilizing DSP, we systematically benchmark neural reconstruction methods, uncovering a consistent, measurable correlation between scene complexity and reconstruction accuracy. Empirical results indicate that higher delentropy strongly correlates with increased reconstruction errors, validating DSP as a reliable complexity prior. The data and code are available on the project page at https://rdbch.github.io/claravid/
Published: March 22, 2025
Last updated: July 31, 2025
RecGPT Technical Report
Recommender systems are among the most impactful applications of artificial intelligence, serving as critical infrastructure connecting users, merchants, and platforms. However, most current industrial systems remain heavily reliant on historical co-occurrence patterns and log-fitting objectives, i.e., optimizing for past user interactions without explicitly modeling user intent. This log-fitting approach often leads to overfitting to narrow historical preferences, failing to capture users' evolving and latent interests. As a result, it reinforces filter bubbles and long-tail phenomena, ultimately harming user experience and threatening the sustainability of the whole recommendation ecosystem. To address these challenges, we rethink the overall design paradigm of recommender systems and propose RecGPT, a next-generation framework that places user intent at the center of the recommendation pipeline. By integrating large language models (LLMs) into key stages of user interest mining, item retrieval, and explanation generation, RecGPT transforms log-fitting recommendation into an intent-centric process. To effectively align general-purpose LLMs to the above domain-specific recommendation tasks at scale, RecGPT incorporates a multi-stage training paradigm, which integrates reasoning-enhanced pre-alignment and self-training evolution, guided by a Human-LLM cooperative judge system. Currently, RecGPT has been fully deployed on the Taobao App. Online experiments demonstrate that RecGPT achieves consistent performance gains across stakeholders: users benefit from increased content diversity and satisfaction, merchants and the platform gain greater exposure and conversions. These comprehensive improvement results across all stakeholders validates that LLM-driven, intent-centric design can foster a more sustainable and mutually beneficial recommendation ecosystem.
Published: July 30, 2025
Last updated: July 31, 2025
Design of a bioinspired robophysical antenna for insect-scale tactile perception and navigation
The American cockroach (Periplaneta americana) uses its soft antennae to guide decision making by extracting rich tactile information from tens of thousands of distributed mechanosensors. Although tactile sensors enable robust, autonomous perception and navigation in natural systems, replicating these capabilities in insect-scale robots remains challenging due to stringent size, weight, and power constraints that limit existing sensor technologies. To overcome these limitations, we introduce CITRAS (Cockroach Inspired Tactile Robotic Antenna Sensor), a bioinspired, multi-segmented, compliant laminate sensor with embedded capacitive angle sensors. CITRAS is compact (73.7x15.6x2.1 mm), lightweight (491 mg), and low-power (32 mW), enabling seamless integration with miniature robotic platforms. The segmented compliant structure passively bends in response to environmental stimuli, achieving accurate hinge angle measurements with maximum errors of just 0.79 degree (quasistatic bending) and 3.58 degree (dynamic bending). Experimental evaluations demonstrate CITRAS' multifunctional tactile perception capabilities: predicting base-to-tip distances with 7.75 % error, estimating environmental gap widths with 6.73 % error, and distinguishing surface textures through differential sensor response. The future integration of this bioinspired tactile antenna in insect-scale robots addresses critical sensing gaps, promising enhanced autonomous exploration, obstacle avoidance, and environmental mapping in complex, confined environments.
Published: July 31, 2025
Last updated: July 31, 2025
Enhancing Multi-Agent Collaboration with Attention-Based Actor-Critic Policies
This paper introduces Team-Attention-Actor-Critic (TAAC), a reinforcement learning algorithm designed to enhance multi-agent collaboration in cooperative environments. TAAC employs a Centralized Training/Centralized Execution scheme incorporating multi-headed attention mechanisms in both the actor and critic. This design facilitates dynamic, inter-agent communication, allowing agents to explicitly query teammates, thereby efficiently managing the exponential growth of joint-action spaces while ensuring a high degree of collaboration. We further introduce a penalized loss function which promotes diverse yet complementary roles among agents. We evaluate TAAC in a simulated soccer environment against benchmark algorithms representing other multi-agent paradigms, including Proximal Policy Optimization and Multi-Agent Actor-Attention-Critic. We find that TAAC exhibits superior performance and enhanced collaborative behaviors across a variety of metrics (win rates, goal differentials, Elo ratings, inter-agent connectivity, balanced spatial distributions, and frequent tactical interactions such as ball possession swaps).
Published: July 30, 2025
Last updated: July 31, 2025
Quantum Transfer Learning for MNIST Classification Using a Hybrid Quantum-Classical Approach
We implement a hybrid quantum-classical model for image classification that compresses MNIST digit images into a low-dimensional feature space and then maps these features onto a 5-qubit quantum state. First, an autoencoder compresses each 28×28 image (784 pixels) into a 64-dimensional latent vector, preserving salient features of the digit with minimal reconstruction error. We further reduce the latent representation to 5 principal components using Principal Component Analysis (PCA), to match the 5 available qubits. These 5 features are encoded as rotation angles in a quantum circuit with 5 qubits. The quantum feature map applies single-qubit rotations (R_y gates) proportional to the feature values, followed by a Hadamard gate and a cascade of entangling CNOT gates to produce a non-product entangled state. Measuring the 5-qubit state yields a 32-dimensional probability distribution over basis outcomes, which serves as a quantum-enhanced feature vector for classification. A classical neural network with a softmax output is then trained on these 32-dimensional quantum feature vectors to predict the digit class. We evaluate the hybrid model on the MNIST dataset and compare it to a purely classical baseline that uses the 64-dimensional autoencoder latent features for classification. The results show that the hybrid model can successfully classify digits, demonstrating the feasibility of integrating quantum computing in the classification pipeline, although its accuracy (about 75% on test data) currently falls below the classical baseline (about 98% on the same compressed data).
Published: August 05, 2024
Last updated: July 31, 2025
Unable to Forget: Proactive Interference Reveals Working Memory Limits in LLMs Beyond Context Length
Information retrieval in Large Language Models (LLMs) is increasingly recognized as intertwined with generation capabilities rather than mere lookup. While longer contexts are often assumed to improve retrieval, the effects of intra-context interference remain understudied. To address this, we adapt the proactive interference (PI) paradigm from cognitive science, where earlier information disrupts recall of newer updates. In humans, susceptibility to such interference is inversely linked to working memory capacity. We introduce PI-LLM, an evaluation that sequentially streams semantically related key-value updates and queries only the final values. Although these final values are clearly positioned just before the query, LLM retrieval accuracy declines log-linearly toward zero as interference accumulates; errors arise from retrieving previously overwritten values. Attempts to mitigate interference via prompt engineering (e.g., instructing models to ignore earlier input) yield limited success. These findings reveal a fundamental constraint on LLMs' ability to disentangle interference and flexibly manipulate information, suggesting a working memory bottleneck beyond mere context access. This calls for approaches that strengthen models' ability to suppress irrelevant content during retrieval.
Published: June 09, 2025
Last updated: July 31, 2025
DiffuMatch: Category-Agnostic Spectral Diffusion Priors for Robust Non-rigid Shape Matching
Deep functional maps have recently emerged as a powerful tool for solving non-rigid shape correspondence tasks. Methods that use this approach combine the power and flexibility of the functional map framework, with data-driven learning for improved accuracy and generality. However, most existing methods in this area restrict the learning aspect only to the feature functions and still rely on axiomatic modeling for formulating the training loss or for functional map regularization inside the networks. This limits both the accuracy and the applicability of the resulting approaches only to scenarios where assumptions of the axiomatic models hold. In this work, we show, for the first time, that both in-network regularization and functional map training can be replaced with data-driven methods. For this, we first train a generative model of functional maps in the spectral domain using score-based generative modeling, built from a large collection of high-quality maps. We then exploit the resulting model to promote the structural properties of ground truth functional maps on new shape collections. Remarkably, we demonstrate that the learned models are category-agnostic, and can fully replace commonly used strategies such as enforcing Laplacian commutativity or orthogonality of functional maps. Our key technical contribution is a novel distillation strategy from diffusion models in the spectral domain. Experiments demonstrate that our learned regularization leads to better results than axiomatic approaches for zero-shot non-rigid shape matching. Our code is available at: https://github.com/daidedou/diffumatch/
Published: July 31, 2025
Last updated: July 31, 2025
Anomalous Samples for Few-Shot Anomaly Detection
Several anomaly detection and classification methods rely on large amounts of non-anomalous or "normal" samples under the assump- tion that anomalous data is typically harder to acquire. This hypothesis becomes questionable in Few-Shot settings, where as little as one anno- tated sample can make a significant difference. In this paper, we tackle the question of utilizing anomalous samples in training a model for bi- nary anomaly classification. We propose a methodology that incorporates anomalous samples in a multi-score anomaly detection score leveraging recent Zero-Shot and memory-based techniques. We compare the utility of anomalous samples to that of regular samples and study the benefits and limitations of each. In addition, we propose an augmentation-based validation technique to optimize the aggregation of the different anomaly scores and demonstrate its effectiveness on popular industrial anomaly detection datasets.
Published: July 31, 2025
Last updated: July 31, 2025
Generalizable Image Repair for Robust Visual Control
Vision-based control relies on accurate perception to achieve robustness. However, image distribution changes caused by sensor noise, adverse weather, and dynamic lighting can degrade perception, leading to suboptimal control decisions. Existing approaches, including domain adaptation and adversarial training, improve robustness but struggle to generalize to unseen corruptions while introducing computational overhead. To address this challenge, we propose a real-time image repair module that restores corrupted images before they are used by the controller. Our method leverages generative adversarial models, specifically CycleGAN and pix2pix, for image repair. CycleGAN enables unpaired image-to-image translation to adapt to novel corruptions, while pix2pix exploits paired image data when available to improve the quality. To ensure alignment with control performance, we introduce a control-focused loss function that prioritizes perceptual consistency in repaired images. We evaluated our method in a simulated autonomous racing environment with various visual corruptions. The results show that our approach significantly improves performance compared to baselines, mitigating distribution shift and enhancing controller reliability.
Published: March 07, 2025
Last updated: July 31, 2025
Beyond the Encoder: Joint Encoder-Decoder Contrastive Pre-Training Improves Dense Prediction
Contrastive learning methods in self-supervised settings have primarily focused on pre-training encoders, while decoders are typically introduced and trained separately for downstream dense prediction tasks. However, this conventional approach overlooks the potential benefits of jointly pre-training both encoder and decoder. In this paper, we propose DeCon, an efficient encoder-decoder self-supervised learning (SSL) framework that supports joint contrastive pre-training. We first extend existing SSL architectures to accommodate diverse decoders and their corresponding contrastive losses. Then, we introduce a weighted encoder-decoder contrastive loss with non-competing objectives to enable the joint pre-training of encoder-decoder architectures. By adapting an established contrastive SSL framework for dense prediction tasks, DeCon achieves new state-of-the-art results: on COCO object detection and instance segmentation when pre-trained on COCO dataset; across almost all dense downstream benchmark tasks when pre-trained on COCO+ and ImageNet-1K. Our results demonstrate that joint pre-training enhances the representation power of the encoder and improves performance in dense prediction tasks. This gain persists across heterogeneous decoder architectures, various encoder architectures, and in out-of-domain limited-data scenarios.
Published: March 21, 2025
Last updated: July 31, 2025
GCL-GCN: Graphormer and Contrastive Learning Enhanced Attributed Graph Clustering Network
Attributed graph clustering holds significant importance in modern data analysis. However, due to the complexity of graph data and the heterogeneity of node attributes, leveraging graph information for clustering remains challenging. To address this, we propose a novel deep graph clustering model, GCL-GCN, specifically designed to address the limitations of existing models in capturing local dependencies and complex structures when dealing with sparse and heterogeneous graph data. GCL-GCN introduces an innovative Graphormer module that combines centrality encoding and spatial relationships, effectively capturing both global and local information between nodes, thereby enhancing the quality of node representations. Additionally, we propose a novel contrastive learning module that significantly enhances the discriminative power of feature representations. In the pre-training phase, this module increases feature distinction through contrastive learning on the original feature matrix, ensuring more identifiable initial representations for subsequent graph convolution and clustering tasks. Extensive experimental results on six datasets demonstrate that GCL-GCN outperforms 14 advanced methods in terms of clustering quality and robustness. Specifically, on the Cora dataset, it improves ACC, NMI, and ARI by 4.94%, 13.01%, and 10.97%, respectively, compared to the primary comparison method MBN.
Published: July 25, 2025
Last updated: July 31, 2025
Disparate Conditional Prediction in Multiclass Classifiers
We propose methods for auditing multiclass classifiers for fairness under multiclass equalized odds,by estimating the deviation from equalized odds when the classifier is not completely fair. We generalize to multiclass classifiers the measure of Disparate Conditional Prediction (DCP), originally suggested by Sabato & Yom-Tov (2020) for binary classifiers. DCP is defined as the fraction of the population for which the classifier predicts with conditional prediction probabilities that differ from the closest common baseline. We provide new local-optimization methods for estimating the multiclass DCPunder two different regimes,one in which the conditional confusion matrices for each protected sub-population are known, and one in which these cannot be estimated, for instance, because the classifier is inaccessible or because good-quality individual-level data is not available. These methods can be used to detect classifiers that likely treat a significant fraction of the population unfairly. Experiments demonstrate the accuracy of the methods. Code is provided at https://github.com/sivansabato/ DCPmulticlass.
Published: June 07, 2022
Last updated: July 31, 2025
KGN-Pro: Keypoint-Based Grasp Prediction through Probabilistic 2D-3D Correspondence Learning
High-level robotic manipulation tasks demand flexible 6-DoF grasp estimation to serve as a basic function. Previous approaches either directly generate grasps from point-cloud data, suffering from challenges with small objects and sensor noise, or infer 3D information from RGB images, which introduces expensive annotation requirements and discretization issues. Recent methods mitigate some challenges by retaining a 2D representation to estimate grasp keypoints and applying Perspective-n-Point (PnP) algorithms to compute 6-DoF poses. However, these methods are limited by their non-differentiable nature and reliance solely on 2D supervision, which hinders the full exploitation of rich 3D information. In this work, we present KGN-Pro, a novel grasping network that preserves the efficiency and fine-grained object grasping of previous KGNs while integrating direct 3D optimization through probabilistic PnP layers. KGN-Pro encodes paired RGB-D images to generate Keypoint Map, and further outputs a 2D confidence map to weight keypoint contributions during re-projection error minimization. By modeling the weighted sum of squared re-projection errors probabilistically, the network effectively transmits 3D supervision to its 2D keypoint predictions, enabling end-to-end learning. Experiments on both simulated and real-world platforms demonstrate that KGN-Pro outperforms existing methods in terms of grasp cover rate and success rate.
Published: July 20, 2025
Last updated: July 31, 2025
Explainable Image Classification with Reduced Overconfidence for Tissue Characterisation
The deployment of Machine Learning models intraoperatively for tissue characterisation can assist decision making and guide safe tumour resections. For image classification models, pixel attribution methods are popular to infer explainability. However, overconfidence in deep learning model's predictions translates to overconfidence in pixel attribution. In this paper, we propose the first approach which incorporates risk estimation into a pixel attribution method for improved image classification explainability. The proposed method iteratively applies a classification model with a pixel attribution method to create a volume of PA maps. This volume is used for the first time, to generate a pixel-wise distribution of PA values. We introduce a method to generate an enhanced PA map by estimating the expectation values of the pixel-wise distributions. In addition, the coefficient of variation (CV) is used to estimate pixel-wise risk of this enhanced PA map. Hence, the proposed method not only provides an improved PA map but also produces an estimation of risk on the output PA values. Performance evaluation on probe-based Confocal Laser Endomicroscopy (pCLE) data and ImageNet verifies that our improved explainability method outperforms the state-of-the-art.
Published: July 31, 2025
Last updated: July 31, 2025
Enhanced Velocity Field Modeling for Gaussian Video Reconstruction
High-fidelity 3D video reconstruction is essential for enabling real-time rendering of dynamic scenes with realistic motion in virtual and augmented reality (VR/AR). The deformation field paradigm of 3D Gaussian splatting has achieved near-photorealistic results in video reconstruction due to the great representation capability of deep deformation networks. However, in videos with complex motion and significant scale variations, deformation networks often overfit to irregular Gaussian trajectories, leading to suboptimal visual quality. Moreover, the gradient-based densification strategy designed for static scene reconstruction proves inadequate to address the absence of dynamic content. In light of these challenges, we propose a flow-empowered velocity field modeling scheme tailored for Gaussian video reconstruction, dubbed FlowGaussian-VR. It consists of two core components: a velocity field rendering (VFR) pipeline which enables optical flow-based optimization, and a flow-assisted adaptive densification (FAD) strategy that adjusts the number and size of Gaussians in dynamic regions. We validate our model's effectiveness on multi-view dynamic reconstruction and novel view synthesis with multiple real-world datasets containing challenging motion scenarios, demonstrating not only notable visual improvements (over 2.5 dB gain in PSNR) and less blurry artifacts in dynamic textures, but also regularized and trackable per-Gaussian trajectories.
Published: July 31, 2025
Last updated: July 31, 2025
Mathematical Proof as a Litmus Test: Revealing Failure Modes of Advanced Large Reasoning Models
Large reasoning models (e.g., R1, o3) have demonstrated remarkable mathematical problem-solving abilities. However, the high reported accuracy of these advanced models on popular datasets, reliance on purely numerical evaluation and potential benchmark leakage, often masks their true reasoning shortcomings. To address this, we propose leveraging the inherent rigor and methodological complexity of mathematical proofs as a diagnostic tool to expose these hidden failures. Specifically, we introduce the RFMDataset (Reveal Failure Modes), a collection of 200 diverse mathematical proof problems, and thoroughly evaluate advanced models' performance on it. Our in-depth analysis of their failures uncovers 10 fine-grained error types, which shows fundamental limitations in current large reasoning models: 1) large reasoning models grapple profoundly with mathematical proofs, with some generating entirely correct proofs for less than 20% of problems and failing even on basic ones; 2) models exhibit a diverse spectrum of reasoning failures, prominently demonstrating the lack of guarantees for the correctness and rigor of single-step reasoning; and 3) models show hallucination and incompleteness during the reasoning process. Our findings reveal that models' self-reflection is insufficient to resolve the current logical dilemmas, necessitating formalized and fine-grained logical training.
Published: June 20, 2025
Last updated: July 31, 2025
TextQuests: How Good are LLMs at Text-Based Video Games?
Evaluating AI agents within complex, interactive environments that mirror real-world challenges is critical for understanding their practical capabilities. While existing agent benchmarks effectively assess skills like tool use or performance on structured tasks, they often do not fully capture an agent's ability to operate autonomously in exploratory environments that demand sustained, self-directed reasoning over a long and growing context. To spur the development of agents capable of more robust intrinsic reasoning over long horizons, we introduce TextQuests, a benchmark based on the Infocom suite of interactive fiction games. These text-based adventures, which can take human players over 30 hours and require hundreds of precise actions to solve, serve as an effective proxy for evaluating AI agents on focused, stateful tasks. The benchmark is specifically designed to assess an LLM agent's capacity for self-contained problem-solving by precluding the use of external tools, thereby focusing on intrinsic long-context reasoning capabilities in an exploratory environment characterized by the need for trial-and-error learning and sustained problem-solving within a single interactive session. We release TextQuests at https://textquests.ai.
Published: July 31, 2025
Last updated: July 31, 2025
Scalable Multi-Task Reinforcement Learning for Generalizable Spatial Intelligence in Visuomotor Agents
While Reinforcement Learning (RL) has achieved remarkable success in language modeling, its triumph hasn't yet fully translated to visuomotor agents. A primary challenge in RL models is their tendency to overfit specific tasks or environments, thereby hindering the acquisition of generalizable behaviors across diverse settings. This paper provides a preliminary answer to this challenge by demonstrating that RL-finetuned visuomotor agents in Minecraft can achieve zero-shot generalization to unseen worlds. Specifically, we explore RL's potential to enhance generalizable spatial reasoning and interaction capabilities in 3D worlds. To address challenges in multi-task RL representation, we analyze and establish cross-view goal specification as a unified multi-task goal space for visuomotor policies. Furthermore, to overcome the significant bottleneck of manual task design, we propose automated task synthesis within the highly customizable Minecraft environment for large-scale multi-task RL training, and we construct an efficient distributed RL framework to support this. Experimental results show RL significantly boosts interaction success rates by 4× and enables zero-shot generalization of spatial reasoning across diverse environments, including real-world settings. Our findings underscore the immense potential of RL training in 3D simulated environments, especially those amenable to large-scale task generation, for significantly advancing visuomotor agents' spatial reasoning.
Published: July 31, 2025
Last updated: July 31, 2025
Graph Reconstruction from Noisy Random Subgraphs
We consider the problem of reconstructing an undirected graph G on n vertices given multiple random noisy subgraphs or "traces". Specifically, a trace is generated by sampling each vertex with probability p_v, then taking the resulting induced subgraph on the sampled vertices, and then adding noise in the form of either (a) deleting each edge in the subgraph with probability 1-p_e, or (b) deleting each edge with probability f_e and transforming a non-edge into an edge with probability f_e. We show that, under mild assumptions on p_v, p_e and f_e, if G is selected uniformly at random, then O(p_e^-1 p_v^-2log n) or O((f_e-1/2)^-2 p_v^-2log n) traces suffice to reconstruct G with high probability. In contrast, if G is arbitrary, then exp(Ω(n)) traces are necessary even when p_v=1, p_e=1/2.
Published: May 07, 2024
Last updated: July 31, 2025
A survey of multi-agent geosimulation methodologies: from ABM to LLM
We provide a comprehensive examination of agent-based approaches that codify the principles and linkages underlying multi-agent systems, simulations, and information systems. Based on two decades of study, this paper confirms a framework intended as a formal specification for geosimulation platforms. Our findings show that large language models (LLMs) can be effectively incorporated as agent components if they follow a structured architecture specific to fundamental agent activities such as perception, memory, planning, and action. This integration is precisely consistent with the architecture that we formalize, providing a solid platform for next-generation geosimulation systems.
Published: July 31, 2025
Last updated: July 31, 2025
Learning from Rendering: Realistic and Controllable Extreme Rainy Image Synthesis for Autonomous Driving Simulation
Autonomous driving simulators provide an effective and low-cost alternative for evaluating or enhancing visual perception models. However, the reliability of evaluation depends on the diversity and realism of the generated scenes. Extreme weather conditions, particularly extreme rainfalls, are rare and costly to capture in real-world settings. While simulated environments can help address this limitation, existing rainy image synthesizers often suffer from poor controllability over illumination and limited realism, which significantly undermines the effectiveness of the model evaluation. To that end, we propose a learning-from-rendering rainy image synthesizer, which combines the benefits of the realism of rendering-based methods and the controllability of learning-based methods. To validate the effectiveness of our extreme rainy image synthesizer on semantic segmentation task, we require a continuous set of well-labeled extreme rainy images. By integrating the proposed synthesizer with the CARLA driving simulator, we develop CARLARain an extreme rainy street scene simulator which can obtain paired rainy-clean images and labels under complex illumination conditions. Qualitative and quantitative experiments validate that CARLARain can effectively improve the accuracy of semantic segmentation models in extreme rainy scenes, with the models' accuracy (mIoU) improved by 5% - 8% on the synthetic dataset and significantly enhanced in real extreme rainy scenarios under complex illuminations. Our source code and datasets are available at https://github.com/kb824999404/CARLARain/.
Published: February 23, 2025
Last updated: July 31, 2025
From Link Diversity to Cross-Band Feedback Collaboration: A New Perspective on Hybrid Optical-RF Systems
We suggest a re-examination of the conventional view that hybrid optical-radio frequency (O-RF) systems are primarily diversity-driven networks that switch between RF and optical links for robustness. Instead, we uncover a new architectural opportunity: repurposing the optical downlink to enable real-time feedback channel coding over the RF uplink, where structured decoder feedback is delivered from the access point to guide the transmitter's coding strategy. This insight marks a conceptual paradigm shift from passive link diversity to active cross-band collaboration, where the wideband, interference-free optical wireless communication (OWC) is no longer merely a downlink backup but a functional enabler of uplink reliability. To realize this vision, we propose a novel architecture, O-RF with Cross-Band Feedback (O-RF-CBF), that exploits the optical downlink feedback to facilitate adaptive RF uplink coding. Numerical results reveal that O-RF-CBF achieves significant uplink throughput gains over traditional O-RF systems. Our findings highlight that inter-band synergy, not redundancy, is the key to unlocking the full potential of hybrid wireless networks.
Published: July 31, 2025
Last updated: July 31, 2025
UniLDiff: Unlocking the Power of Diffusion Priors for All-in-One Image Restoration
All-in-One Image Restoration (AiOIR) has emerged as a promising yet challenging research direction. To address its core challenges, we propose a novel unified image restoration framework based on latent diffusion models (LDMs). Our approach structurally integrates low-quality visual priors into the diffusion process, unlocking the powerful generative capacity of diffusion models for diverse degradations. Specifically, we design a Degradation-Aware Feature Fusion (DAFF) module to enable adaptive handling of diverse degradation types. Furthermore, to mitigate detail loss caused by the high compression and iterative sampling of LDMs, we design a Detail-Aware Expert Module (DAEM) in the decoder to enhance texture and fine-structure recovery. Extensive experiments across multi-task and mixed degradation settings demonstrate that our method consistently achieves state-of-the-art performance, highlighting the practical potential of diffusion priors for unified image restoration. Our code will be released.
Published: July 31, 2025
Last updated: July 31, 2025
Satellite Federated Fine-Tuning for Foundation Models in Space Computing Power Networks
Advancements in artificial intelligence (AI) and low-earth orbit (LEO) satellites have promoted the application of large remote sensing foundation models for various downstream tasks. However, direct downloading of these models for fine-tuning on the ground is impeded by privacy concerns and limited bandwidth. Satellite federated learning (FL) offers a solution by enabling model fine-tuning directly on-board satellites and aggregating model updates without data downloading. Nevertheless, for large foundation models, the computational capacity of satellites is insufficient to support effective on-board fine-tuning in traditional satellite FL frameworks. To address these challenges, we propose a satellite-ground collaborative federated fine-tuning framework. The key of the framework lies in how to reasonably decompose and allocate model components to alleviate insufficient on-board computation capabilities. During fine-tuning, satellites exchange intermediate results with ground stations or other satellites for forward propagation and back propagation, which brings communication challenges due to the special communication topology of space transmission networks, such as intermittent satellite-ground communication, short duration of satellite-ground communication windows, and unstable inter-orbit inter-satellite links (ISLs). To reduce transmission delays, we further introduce tailored communication strategies that integrate both communication and computing resources. Specifically, we propose a parallel intra-orbit communication strategy, a topology-aware satellite-ground communication strategy, and a latency-minimalization inter-orbit communication strategy to reduce space communication costs. Simulation results demonstrate significant reductions in training time with improvements of approximately 33%.
Published: April 14, 2025
Last updated: July 31, 2025
I2V-GS: Infrastructure-to-Vehicle View Transformation with Gaussian Splatting for Autonomous Driving Data Generation
Vast and high-quality data are essential for end-to-end autonomous driving systems. However, current driving data is mainly collected by vehicles, which is expensive and inefficient. A potential solution lies in synthesizing data from real-world images. Recent advancements in 3D reconstruction demonstrate photorealistic novel view synthesis, highlighting the potential of generating driving data from images captured on the road. This paper introduces a novel method, I2V-GS, to transfer the Infrastructure view To the Vehicle view with Gaussian Splatting. Reconstruction from sparse infrastructure viewpoints and rendering under large view transformations is a challenging problem. We adopt the adaptive depth warp to generate dense training views. To further expand the range of views, we employ a cascade strategy to inpaint warped images, which also ensures inpainting content is consistent across views. To further ensure the reliability of the diffusion model, we utilize the cross-view information to perform a confidenceguided optimization. Moreover, we introduce RoadSight, a multi-modality, multi-view dataset from real scenarios in infrastructure views. To our knowledge, I2V-GS is the first framework to generate autonomous driving datasets with infrastructure-vehicle view transformation. Experimental results demonstrate that I2V-GS significantly improves synthesis quality under vehicle view, outperforming StreetGaussian in NTA-Iou, NTL-Iou, and FID by 45.7%, 34.2%, and 14.9%, respectively.
Published: July 31, 2025
Last updated: July 31, 2025